• Title/Summary/Keyword: VLBI 데이터

Search Result 59, Processing Time 0.021 seconds

PERFORMANCE EVALUATION AND DEVELOPMENT OF RVDB SYSTEM FOR THE SYNCHRONIZED PLAYBACK PROCESSING OF OBSERVED DATA IN KJJVC (한일공동VLBI상관기에서 관측 데이터의 동기재생처리를 위한 RVDB 시스템 개발과 성능시험)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Chung, Hyun-Soo;Lee, Chang-Hoon;Kim, Kwang-Dong;Kim, Hyo-Ryoung;Oyama, Tomoaki;Kawaguchi, Noriyuki;Ozeki, Kensuke
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.91-107
    • /
    • 2008
  • In this paper, we introduce the performance evaluation and development of Raw VLBI Data Buffer(RVDB) system for the synchronized playback processing of observed data in Korea-Japan Joint VLBI Correlator(KJJVC). The high-speed correlation processing system is under development so that the radio data obtained with 8192 channels and 8 Gbps speed from 16 stations will be able to be processed. When the recorded data of each station are played to correlator, the time synchronization of each station is very important because the correlator should process the data obtained with same time and condition. There are many types of recorder systems in the East Asia VLBI Network (EAVN). Therefore it is required to prepare the special time synchronized playback processing system to synchronize the time tag of observed data. The developed RVDB system consists of Data Input Output(DIO), 10GbE switch, and Disk Data Buffer(DDB). It can record the data with maximum 2 Gbps speed, and can play back the data to correlator with nominal 2 Gbps speed. To enable to play back the data of different playback system to the correlator, we developed the high-speed time synchronized playback processing system. We carried out the experiments of playing back and correlation for gigabit correlator and VCS trial product so as to confirm the performance of developed time synchronized playback processing system. In case of online and offline playing back experiment for gigabit correlator, we confirmed that the online and offline correlation results were the same. In case of playing back experiment for VCS trial product, we verified that the wide band and narrow band correlation results were also the same. Through the playing back experiments of RVDB system, the effectiveness of developed RVDB system was verified. In this paper, the system design, construction and experimental results are shown briefly.

A Study on Correlation Processing Method of Multi-Polarization Observation Data by Daejeon Correlator (대전상관기의 다중편파 관측데이터 상관처리 방법에 관한 연구)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.68-76
    • /
    • 2018
  • In this paper, we describe the correlation processing method of multi-polarization observation data of the Daejeon Correlator. VLBI observations include single or multiple polarized observations depending on the type of object. Polarization observations are performed to observe the characteristics of the object. During the observations of the celestial object, polarization measurements are also performed to determine the delay values and causes of changes in the object. Correlation processing of polarization observation data of the Daejeon correlator is proposed by OCTAVIA of a synchronous reproduction processing apparatus that outputs data input to each antenna unit by using an output bit selection function to convert bits and the order of the data streams is changed, And the input of the Daejeon correlator is configured to perform the polarization correlation processing by conducting correlation processing by setting the existing stream number to be the same. Correlation processing is conducted on the test data observed for the polarization correlation processing and it is verified through experiments that the polarization correlation processing method of the proposed Daejeon correlator is effective.

Accuracy Analysis of Unified Control Point Coordinate Using GAMIT/GLOBK Software (GAMIT/GLOBK를 활용한 통합기준점 성과 정확도 분석)

  • Jae Myoung, Cho;Hong Sik, Yun;Dong Ha, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.103-110
    • /
    • 2015
  • This paper planned for the adjustment of unified control points by compared adjusted software for integrated network and the national integrated network. There may be some errors in the survey date and interpretation of data processing due to applying different software each year. To minimize errors, we performed a precision network adjustment by consolidating control points per observation session over years. Prior to perform the integrated network adjustment with the GPS analysis program (GLOBK) for the final integrated network adjustment, the Quasi-Observation Combination Analysis(QOCA), the Global Kalman filter VLBI and the GLOBK were compared and analyzed to perform an integrated network adjustment. The integrated network adjustment result indicates that the RMSE was rather big with ±0.03m along the vertical axis, but ±0.006m along the horizontal, that is not much different from the existing result.

A Study on the Correlation Results for Fringe Rotation and Delay Tracking of the VCS (VCS의 지연추적과 프린지 회전에 대한 상관결과 고찰)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Oh, ChungSik;Jung, Jin-Seung;Chung, Dong-Kyu;Oyama, Tomoaki;Kawaguchi, Noriyuki;Kobayashi, Hideyuki;Kono, Yusuke;Ozeki, Kensuke;Onuki, Hirohumi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.220-232
    • /
    • 2012
  • In this paper, we investigate the correlation result due to the problems of delay tracking and fringe rotation module in the VCS(VLBI Correlation Subsystem). The VCS, FX-type correlator, adopts the delay tracking and fringe rotation module in order to compensate the delay change and fringe phase of wave signal from the radio source by Doppler's effect. The phase of observed data is also compensated by means of delay tracking and fringe rotation in the correlator, but we confirmed that the phase is unstable by applying long integration period of AIPS(Astronomical Image Processing System) rather than correlator. And the delay value of observed data has the errors of several tens nanoseconds than normal case at the analysis of correlation result. In addition, we found that the phase of correlation results is not connected as the unit of FFT-segment because the initial fringe phase at the fringe rotation module is not correctly determined. In this paper, in order to solve these problems, the original direction of 90 degree phase jump is reversely modified when the bit-shift occurred at the delay tracking. And the initial fringe phase at the fringe rotation module is correctly modified by using the initial phase of observed data. In addition, the parameter calculation module was abnormally operated as designed in the fringe rotation. So, the logical program by the VCS is modified so as to calculate the parameters correctly. Through the experiments of correlation processing over the above problems, the modified proposal algorithm is adequately corrected to the data analysis results, so that the experimental results make it clear for us to operate the developed VCS hardware correlator normally.

Improvement of Residual Delay Compensation Algorithm of KJJVC (한일상관기의 잔차 지연 보정 알고리즘의 개선)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Oh, Chung-Sik;Jung, Jin-Seung;Chung, Dong-Kyu;Oyama, Tomoaki;Kawaguchi, Noriyuki;Kobayashi, Hideyuki;Kawakami, Kazuyuki;Ozeki, Kensuke;Onuki, Hirohumi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.136-146
    • /
    • 2013
  • In this paper, the residual delay compensation algorithm is proposed for FX-type KJJVC. In case of initial version as that design algorithm of KJJVC, the integer calculation and the cos/sin table for the phase compensation coefficient were introduced in order to speed up of calculation. The mismatch between data timing and residual delay phase and also between bit-jump and residual delay phase were found and fixed. In final design of KJJVC residual delay compensation algorithm, the initialization problem on the rotation memory of residual delay compensation was found when the residual delay compensated value was applied to FFT-segment, and this problem is also fixed by modifying the FPGA code. Using the proposed residual delay compensation algorithm, the band shape of cross power spectrum becomes flat, which means there is no significant loss over the whole bandwidth. To verify the effectiveness of proposed residual delay compensation algorithm, we conducted the correlation experiments for real observation data using the simulator and KJJVC. We confirmed that the designed residual delay compensation algorithm is well applied in KJJVC, and the signal to noise ratio increases by about 8%.

IMAGING SIMULATIONS FOR THE KOREAN VLBI NETWORK(KVN) (한국우주전파관측망(KVN)의 영상모의실험)

  • Jung, Tae-Hyun;Rhee, Myung-Hyun;Roh, Duk-Gyoo;Kim, Hyun-Goo;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • The Korean VLBI Network (KVN) will open a new field of research in astronomy, geodesy and earth science using the newest three Elm radio telescopes. This will expand our ability to look at the Universe in the millimeter regime. Imaging capability of radio interferometry is highly dependent upon the antenna configuration, source size, declination and the shape of target. In this paper, imaging simulations are carried out with the KVN system configuration. Five test images were used which were a point source, multi-point sources, a uniform sphere with two different sizes compared to the synthesis beam of the KVN and a Very Large Array (VLA) image of Cygnus A. The declination for the full time simulation was set as +60 degrees and the observation time range was -6 to +6 hours around transit. Simulations have been done at 22GHz, one of the KVN observation frequency. All these simulations and data reductions have been run with the Astronomical Image Processing System (AIPS) software package. As the KVN array has a resolution of about 6 mas (milli arcsecond) at 220Hz, in case of model source being approximately the beam size or smaller, the ratio of peak intensity over RMS shows about 10000:1 and 5000:1. The other case in which model source is larger than the beam size, this ratio shows very low range of about 115:1 and 34:1. This is due to the lack of short baselines and the small number of antenna. We compare the coordinates of the model images with those of the cleaned images. The result shows mostly perfect correspondence except in the case of the 12mas uniform sphere. Therefore, the main astronomical targets for the KVN will be the compact sources and the KVN will have an excellent performance in the astrometry for these sources.

상관결과 분석을 위한 CODA/FITS 변환 소프트웨어 개발

  • O, Se-Jin;Kan-Ya, Yukitoshi;Yeom, Jae-Hwan;No, Deok-Gyu;O, Chung-Sik;Jeong, Jin-Seung;Jeong, Dong-Gyu;Oyama, Tomoaki;Miyazaki, Atsushi;Noriyuki;Kobayashi, Hideyuki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.218.1-218.1
    • /
    • 2012
  • 2010년 7월부터 한국천문연구원과 일본국립천문대가 공동으로 운영하고 있는 한일상관센터(KJCC)에는 최대 16관측국, 최고 속도 8Gbps, 8192출력채널의 성능을 갖는 한일공동VLBI 상관기(KJJVC)가 설치되어 운용되고 있다. 상관결과는 각 출력 채널별로 관측데이터의 비지빌리티 정보만을 보유하고 있기 때문에, AIPS 등의 천문분석 프로그램에서 활용하기 위해서는 변환작업을 수행해야 한다. KJJVC는 일본국립천문대의 FX 상관기에서 활용하고 있는 CODA(Correlated Output Data Analysis) 파일 시스템을 도입하여, KJJVC의 상관결과 후처리에 적합하도록 수정하였다. 이 CODA 파일 시스템은 관측과 상관처리시 필요한 여러 가지 파라미터 정보를 정렬하고, 상관결과인 비지빌리티 정보를 각 채널별로 정렬하여 파일 시스템을 구축한 것이다. 본 발표에서는 KJJVC에서 개발한 CODA 파일 시스템과 AIPS 등에서 분석에 활용할 수 있는 FITS 형식으로 변환하는 소프트웨어의 개발과 성능에 대해 간략히 소개한다.

  • PDF

A Study on the Digital Filter Design for Radio Astronomy Using FPGA (FPGA를 이용한 전파천문용 디지털 필터 설계에 관한 기본연구)

  • Jung, Gu-Young;Roh, Duk-Gyoo;Oh, Se-Jin;Yeom, Jae-Hwan;Kang, Yong-Woo;Lee, Chang-Hoon;Chung, Hyun0Soo;Kim, Kwang-Dong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.62-74
    • /
    • 2008
  • In this paper, we would like to propose the design of symmetric digital filter core in order to use in the radio astronomy. The function of FIR filter core would be designed by VHDL code required at the Data Acquisition System (DAS) of Korean VLBI Network (KVN) based on the FPGA chip of Vertex-4 SX55 model of Xilinx company. The designed digital filter has the symmetric structure to increase the effectiveness of system by sharing the digital filter coefficient. The SFFU(Symmetric FIR Filter Unit) use the parallel processing method to perform the data processing efficiently by using the constrained system clock. In this paper, therefore, for the effective design of SFFU, the Unified Synthesis software ISE Foundation and Core Generator which has excellent GUI environment were used to overall IP core synthesis and experiments. Through the synthesis results of digital filter core, we verified the resource usage is less than 40% such as Slice LUT and achieved the maximum operation frequency is more than 260MHz. We also confirmed the SFFU would be well operated without error according to the SFFU simulation result using the Modelsim 6.1a of Mentor Graphics Company. To verify the function of SFFU, we carried out the additional simulation experiments using the pseudo signal to the Matlab software. From the comparison experimental results of simulation and the designed digital FIR filter, we confirmed the FIR filter was well performed with filter's basic function. So we verified the effectiveness of the designed FIR digital filter with symmetric structure using FPGA and VHDL.

  • PDF

A Study on the Digital Filter Design using Software for Analysis of Observation Data in Radio Astronomy (전파천문 관측데이터 분석을 위해 소프트웨어를 이용한 디지털필터 설계에 관한 연구)

  • Yeom, Jae-Hwan;Oh, Se-Jin;Roh, Duk-Gyoo;Oh, Chung-Sik;Jung, Dong-Kyu;Shin, Jae-Sik;Kim, Hyo-Ryoung;Hwang, Ju-Yeon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.175-181
    • /
    • 2015
  • In this paper, we propose a design method for a digital filter using software in order to analyze the radio astronomy observation data. Recently the analysis method for radio astronomy observing system is transferring from hardware to software by developing of state-of-the-art of computer system. The existing hardware system is not able to easily change the specification because it is implemented to meet special requirements and it takes a high cost and time. In case of software, however, it has an advantage to implement with small cost if open software is used, and flexibly changes to satisfy the desired specification. But, in order to analyze the massive data like radio astronomy with software, the good performance system is needed for computer. Therefore, this paper proposes a digital filter design method using software with the same performance as that of digital filter implemented with hardware in observation system which is operated by the KVN(Korean VLBI Network). To design a digital filter, the proposed method is performed with standard C language and the simulation is conducted with GNU(GNU's Not Unix) Octave and investigated to show its effectiveness. In addition, for the high speed operation of the designed digital filter, the SSE(Streaming SIMD Extensions) library is adopted for available parallel operation. By the proposed digital filter, the digital filtering is performed for the wide band observation data in the KVN observation mode, the filtering result of narrow band observation has no ripple inside of stop band, and confirmed the effectiveness of the proposed method.