• Title/Summary/Keyword: VIDEO ENCODER

Search Result 447, Processing Time 0.029 seconds

Video Quality Minimizing Method Using Feedback Information (피드백을 이용한 영상 품질 변화 최소화 방법)

  • Park, Sang-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.332-335
    • /
    • 2007
  • A real-time frame-layer rate control algorithm with a transmission buffer is proposed for minimizing video quality variation. The proposed rate control method uses a non-iterative optimization method for low computational complexity, and performs bit allocation at the frame level to minimize variation in distortion between frames. In order to reflect the buffer status, we use well-known PID control method. Computational complexity of PID control is very low, so the proposed algorithm is suitable for real-time low-complexity video encoder. Experimental results indicate that the proposed control method provides better PSNR performance than the existing rate control method.

  • PDF

BLOCK-BASED ADAPTIVE BIT ALLOCATION FOR REFENCE MEMORY REDUCTION

  • Park, Sea-Nae;Nam, Jung-Hak;Sim, Dong-Gy;Joo, Young-Hun;Kim, Yong-Serk;Kim, Hyun-Mun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.258-262
    • /
    • 2009
  • In this paper, we propose an effective memory reduction algorithm to reduce the amount of reference frame buffer and memory bandwidth in video encoder and decoder. In general video codecs, decoded previous frames should be stored and referred to reduce temporal redundancy. Recently, reference frames are recompressed for memory efficiency and bandwidth reduction between a main processor and external memory. However, these algorithms could hurt coding efficiency. Several algorithms have been proposed to reduce the amount of reference memory with minimum quality degradation. They still suffer from quality degradation with fixed-bit allocation. In this paper, we propose an adaptive block-based min-max quantization that considers local characteristics of image. In the proposed algorithm, basic process unit is $8{\times}8$ for memory alignment and apply an adaptive quantization to each $4{\times}4$ block for minimizing quality degradation. We found that the proposed algorithm could improve approximately 37.5% in coding efficiency, compared with an existing memory reduction algorithm, at the same memory reduction rate.

  • PDF

Video Transmission Method for Constant Video Quality in Next-Generation Wireless Networks (차세대 이동망에서 영상 품질을 보장하기 위한 전송 방법)

  • Park, Sang-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.175-178
    • /
    • 2007
  • According to recently presented QoS architecture by 3GPP, a traffic conditioner may be deployed to provide conformance of the negotiated QoS. A real-time frame-layer rate control method which can be applied to the traffic conditioner is proposed. The proposed rate control method uses a non-iterative optimization method for low computational complexity, and performs bit allocation at the frame level to minimize the average distortion over an entire sequence as well as variations in distortion between frames. The proposed algorithm does not produce time delay from encoding, and is suitable for real-time low-complexity video encoder.

  • PDF

Adaptive Correlation Noise Model for DC Coefficients in Wyner-Ziv Video Coding

  • Qin, Hao;Song, Bin;Zhao, Yue;Liu, Haihua
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.190-198
    • /
    • 2012
  • An adaptive correlation noise model (CNM) construction algorithm is proposed in this paper to increase the efficiency of parity bits for correcting errors of the side information in transform domain Wyner-Ziv (WZ) video coding. The proposed algorithm introduces two techniques to improve the accuracy of the CNM. First, it calculates the mean of direct current (DC) coefficients of the original WZ frame at the encoder and uses it to assist the decoder to calculate the CNM parameters. Second, by considering the statistical property of the transform domain correlation noise and the motion characteristic of the frame, the algorithm adaptively models the DC coefficients of the correlation noise with the Gaussian distribution for the low motion frames and the Laplacian distribution for the high motion frames, respectively. With these techniques, the proposed algorithm is able to make a more accurate approximation to the real distribution of the correlation noise at the expense of a very slight increment to the coding complexity. The simulation results show that the proposed algorithm can improve the average peak signal-to-noise ratio of the decoded WZ frames by 0.5 dB to 1.5 dB.

Design of Core of MPEG Decoder for Object-Oriented Video on Network (네트워크 기반 객체 지향형 영상 처리를 위한 MPEG 디코더 코어 설계)

  • 박주현;김영민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2120-2130
    • /
    • 1998
  • This paper concerns a design of programmable MPEG decoder for video processing by object unit on network. The decoder can process video data effectively by a embedded controller with stack buffers for supporting OOP (Object-Oriented Programming). The controller offers extended instructions that process several data types including 32bit integer type. In addition to that, we have a vector processor, in this decoder that can execute advanced compensation and prediction by half pixel and SA(Shape Adaptive)-IDCT of MPEG-4. Absolutors and halfers in the vector processor make this architecture extensive to a encoder. We verified the decoder with $0.6\mu\textrm{m}$ 5-Volt CMOS COMPASS library.

  • PDF

A Fast Distributed Video Decoding by Frame Adaptive Parity Bit Request Estimation (프레임간 적응적 연산을 이용한 패리티 비트의 예측에 의한 고속 분산 복호화)

  • Kim, Man-Jae;Kim, Jin-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.161-162
    • /
    • 2011
  • Recently, many research works are focusing on DVC (Distributed Video Coding) system for low complexity encoder. However the feedback channel-based parity bit control is a major cause of the high decoding time latency. Spatial and temporal correlation is high in video and, therefore, the statistical property can be applied for the parity bit request of LDPCA frame. By introducing frame adaptive parity bit request estimation method, this paper proposes a new method for reducing the decoding time latency. Through computer simulations, it is shown that the proposed method achieves about 80% of complexity reduction, compared to the conventional no-estimation method.

  • PDF

Video Quality Variation Minimizing Method using PID Controller (PID 제어기를 이용한 영상 품질 변화 최소화 방법)

  • Park, Sang-Hyun;Kang, Eui-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2009-2014
    • /
    • 2007
  • A novel method of minimizing video quality variation is proposed for a real-time frame-layer rate control algorithm with a transmission buffer. The proposed rate control method uses a non-iterative optimization method for low computational complexity, and performs bit allocation at the frame level to minimize variation in distortion between frames. In order to reflect the buffer status, we use well-known PID control method. Computational complexity of PID control is very low, so the proposed algorithm is suitable for real-time low-complexity video encoder. Experimental results indicate that the proposed control method provides better PSNR performance than the existing rate control method.

A Study on Error-Resilient, Scalable Video Codecs Based on the Set Partitioning in Hierarchical Trees(SPIHT) Algorithm (계층적 트리의 집합 분할 알고리즘(SPIHT)에 기반한 에러에 강하고 가변적인 웨이브렛 비디오 코덱에 관한 연구)

  • Inn-Ho, Jee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2023
  • Compressed still image or video bitstreams require protection from channel errors in a wireless channel. Embedded Zerotree Coding(EZW), SPIHT could have provided unprecedented high performance in image compression with low complexity. If bit error is generated by dint of wireless channel transmission problem, the loss of synchronization on between encoder and decoder causes serious performance degradation. But wavelet zerotree coding algorithms are producing variable-length codewords, extremely sensitive to bit errors. The idea is to partition the lifting coefficients. A many partition of lifting transform coefficients distributes channel error from wireless channel to each partition. Therefore synchronization problem that caused quality deterioration in still image and video stream was improved.

Adaptive Hard Decision Aided Fast Decoding Method in Distributed Video Coding (적응적 경판정 출력을 이용한 고속 분산 비디오 복호화 기술)

  • Oh, Ryang-Geun;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.66-74
    • /
    • 2010
  • Recently distributed video coding (DVC) is spotlighted for the environment which has restriction in computing resource at encoder. Wyner-Ziv (WZ) coding is a representative scheme of DVC. The WZ encoder independently encodes key frame and WZ frame respectively by conventional intra coding and channel code. WZ decoder generates side information from reconstructed two key frames (t-1, t+1) based on temporal correlation. The side information is regarded as a noisy version of original WZ frame. Virtual channel noise can be removed by channel decoding process. So the performance of WZ coding greatly depends on the performance of channel code. Among existing channel codes, Turbo code and LDPC code have the most powerful error correction capability. These channel codes use stochastically iterative decoding process. However the iterative decoding process is quite time-consuming, so complexity of WZ decoder is considerably increased. Analysis of the complexity of LPDCA with real video data shows that the portion of complexity of LDPCA decoding is higher than 60% in total WZ decoding complexity. Using the HDA (Hard Decision Aided) method proposed in channel code area, channel decoding complexity can be much reduced. But considerable RD performance loss is possible according to different thresholds and its proper value is different for each sequence. In this paper, we propose an adaptive HDA method which sets up a proper threshold according to sequence. The proposed method shows about 62% and 32% of time saving, respectively in LDPCA and WZ decoding process, while RD performance is not that decreased.

Transform Skip Mode Fast Decision Method for HEVC Encoding (HEVC 부호화를 위한 변환생략 모드 고속 선택 방법)

  • Yang, Seungha;Shim, Hiuk Jae;Lee, Dahee;Jeon, Byeungwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.4
    • /
    • pp.172-179
    • /
    • 2014
  • HEVC (High Efficiency Video Coding) fine-tuned many existing coding tools and adopted also many new coding techniques. As a result, HEVC has accomplished about 2 times of compression efficiency enhancement compared to the existing video coding standard of H.264/AVC. One of the newly adopted tools in HEVC is the transform skip scheme which performs quantization without transform. This technique improves coding efficiency especially with computer-generated images. However, the unavailability of global or local properties of general video signals demands encoder to decide whether performing transform or not for each TU (Transform Unit). The necessity of computing rate-distortion costs for this decision is one reason to increase encoder complexity. In this paper, a fast transform skip mode decision method is proposed, which is based on the fast decision of rate-distortion cost calculation for transform skip mode, by considering frequency characteristics of residual signal. The proposed method can reduce $4{\times}4$ TU encoding time by about 27.1% with only about 0.03% consequential decrement in BDBR.