• Title/Summary/Keyword: VGGNet

Search Result 43, Processing Time 0.024 seconds

Performance Enhancement of Automatic Wood Classification of Korean Softwood by Ensembles of Convolutional Neural Networks

  • Kwon, Ohkyung;Lee, Hyung Gu;Yang, Sang-Yun;Kim, Hyunbin;Park, Se-Yeong;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.265-276
    • /
    • 2019
  • In our previous study, the LeNet3 model successfully classified images from the transverse surfaces of five Korean softwood species (cedar, cypress, Korean pine, Korean red pine, and larch). However, a practical limitation exists in our system stemming from the nature of the training images obtained from the transverse plane of the wood species. In real-world applications, it is necessary to utilize images from the longitudinal surfaces of lumber. Thus, we improved our model by training it with images from the longitudinal and transverse surfaces of lumber. Because the longitudinal surface has complex but less distinguishable features than the transverse surface, the classification performance of the LeNet3 model decreases when we include images from the longitudinal surfaces of the five Korean softwood species. To remedy this situation, we adopt ensemble methods that can enhance the classification performance. Herein, we investigated the use of ensemble models from the LeNet and MiniVGGNet models to automatically classify the transverse and longitudinal surfaces of the five Korean softwoods. Experimentally, the best classification performance was achieved via an ensemble model comprising the LeNet2, LeNet3, and MiniVGGNet4 models trained using input images of $128{\times}128{\times}3pixels$ via the averaging method. The ensemble model showed an F1 score greater than 0.98. The classification performance for the longitudinal surfaces of Korean pine and Korean red pine was significantly improved by the ensemble model compared to individual convolutional neural network models such as LeNet3.

A Bubble Detection Method for Conformal Coated PCB Using Transfer Learning based CNN (전이학습 기반의 CNN을 이용한 컨포멀 코팅 PCB에 발생한 기포 검출 방법)

  • Lee, Dong Hee;Cho, SungRyung;Jung, Kyeong-Hoon;Kang, Dong Wook
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.809-812
    • /
    • 2021
  • Air bubbles which may be generated during the PCB coating process can be a major cause of malfunction. so it is necessary to detect the bubbles in advance. In previous studies, candidates for bubbles were extracted using the brightness characteristics of bubbles, and the candidates were verified using CNN(Convolutional Neural Networks). In this paper, we propose a bubble detection method using a transfer learning-based CNN model. The VGGNet is adopted and sigmoid is used as a classification layer, and the last convolutional layer and classification layer are trained together when transfer learning is applied. The performance of the proposed method is F1-score 0.9044, which shows an improvement of about 0.17 compared to the previous study.

Abnormality Detection Method of Factory Roof Fixation Bolt by Using AI

  • Kim, Su-Min;Sohn, Jung-Mo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.33-40
    • /
    • 2022
  • In this paper, we propose a system that analyzes drone photographic images of panel-type factory roofs and conducts abnormal detection of bolts. Currently, inspectors directly climb onto the roof to carry out the inspection. However, safety accidents caused by working conditions at high places are continuously occurring, and new alternatives are needed. In response, the results of drone photography, which has recently emerged as an alternative to the dangerous environment inspection plan, will be easily inspected by finding the location of abnormal bolts using deep learning. The system proposed in this study proceeds with scanning the captured drone image using a sample image for the situation where the bolt cap is released. Furthermore, the scanned position is discriminated by using AI, and the presence/absence of the bolt abnormality is accurately discriminated. The AI used in this study showed 99% accuracy in test results based on VGGNet.

Mushroom Image Recognition using Convolutional Neural Network and Transfer Learning (컨볼루션 신경망과 전이 학습을 이용한 버섯 영상 인식)

  • Kang, Euncheol;Han, Yeongtae;Oh, Il-Seok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.53-57
    • /
    • 2018
  • A poisoning accident is often caused by a situation in which people eat poisonous mushrooms because they cannot distinguish between edible mushrooms and poisonous mushrooms. In this paper, we propose an automatic mushroom recognition system by using the convolutional neural network. We collected 1478 mushroom images of 38 species using image crawling, and used the dataset for learning the convolutional neural network. A comparison experiment using AlexNet, VGGNet, and GoogLeNet was performed using the collected datasets, and a comparison experiment using a class number expansion and a fine-tuning technique for transfer learning were performed. As a result of our experiment, we achieve 82.63% top-1 accuracy and 96.84% top-5 accuracy on test set of our dataset.

Improving the Vehicle Damage Detection Model using YOLOv4 (YOLOv4를 이용한 차량파손 검출 모델 개선)

  • Jeon, Jong Won;Lee, Hyo Seop;Hahn, Hee Il
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.750-755
    • /
    • 2021
  • This paper proposes techniques for detecting the damage status of each part of a vehicle using YOLOv4. The proposed algorithm learns the parts and their damages of the vehicle through YOLOv4, extracts the coordinate information of the detected bounding boxes, and applies the algorithm to determine the relationship between the damage and the vehicle part to derive the damage status for each part. In addition, the technique using VGGNet, the technique using image segmentation and U-Net model, and Weproove.AI deep learning model, etc. are included for objectivity of performance comparison. Through this, the performance of the proposed algorithm is compared and evaluated, and a method to improve the detection model is proposed.

Study on the Surface Defect Classification of Al 6061 Extruded Material By Using CNN-Based Algorithms (CNN을 이용한 Al 6061 압출재의 표면 결함 분류 연구)

  • Kim, S.B.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.229-239
    • /
    • 2022
  • Convolution Neural Network(CNN) is a class of deep learning algorithms and can be used for image analysis. In particular, it has excellent performance in finding the pattern of images. Therefore, CNN is commonly applied for recognizing, learning and classifying images. In this study, the surface defect classification performance of Al 6061 extruded material using CNN-based algorithms were compared and evaluated. First, the data collection criteria were suggested and a total of 2,024 datasets were prepared. And they were randomly classified into 1,417 learning data and 607 evaluation data. After that, the size and quality of the training data set were improved using data augmentation techniques to increase the performance of deep learning. The CNN-based algorithms used in this study were VGGNet-16, VGGNet-19, ResNet-50 and DenseNet-121. The evaluation of the defect classification performance was made by comparing the accuracy, loss, and learning speed using verification data. The DenseNet-121 algorithm showed better performance than other algorithms with an accuracy of 99.13% and a loss value of 0.037. This was due to the structural characteristics of the DenseNet model, and the information loss was reduced by acquiring information from all previous layers for image identification in this algorithm. Based on the above results, the possibility of machine vision application of CNN-based model for the surface defect classification of Al extruded materials was also discussed.

An Authentic Certification System of a Printed Color QR Code based on Convolutional Neural Network (인쇄된 컬러 QR코드의 합성곱 신경망 알고리즘에 의한 진위 판정 시스템)

  • Choi, Do-young;Kim, Jin-soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2020
  • With the widespread of smartphones, the Quick response (QR) code became one of the most popular codes. In this paper, a new type of QR code is proposed to increase the storage capacities and also to contain private information by changing the colors and the shape of patterns in the codes. Then, for a variety of applications of the printed QR codes, this paper proposes an efficient authentic certification system, which is built on an conventional CNN (Convolutional neural network) architecture - VGGNet and classifies authentic or counterfeit with smartphones, easily. For authentic codes, the proposed system extracts the embedded private information. Through practical experiments with a printed QR code, it is shown that the proposed system can classify authentic or counterfeit code, perfectly, and also, are useful for extracting private information.

Automatic Wood Species Identification of Korean Softwood Based on Convolutional Neural Networks

  • Kwon, Ohkyung;Lee, Hyung Gu;Lee, Mi-Rim;Jang, Sujin;Yang, Sang-Yun;Park, Se-Yeong;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.797-808
    • /
    • 2017
  • Automatic wood species identification systems have enabled fast and accurate identification of wood species outside of specialized laboratories with well-trained experts on wood species identification. Conventional automatic wood species identification systems consist of two major parts: a feature extractor and a classifier. Feature extractors require hand-engineering to obtain optimal features to quantify the content of an image. A Convolutional Neural Network (CNN), which is one of the Deep Learning methods, trained for wood species can extract intrinsic feature representations and classify them correctly. It usually outperforms classifiers built on top of extracted features with a hand-tuning process. We developed an automatic wood species identification system utilizing CNN models such as LeNet, MiniVGGNet, and their variants. A smartphone camera was used for obtaining macroscopic images of rough sawn surfaces from cross sections of woods. Five Korean softwood species (cedar, cypress, Korean pine, Korean red pine, and larch) were under classification by the CNN models. The highest and most stable CNN model was LeNet3 that is two additional layers added to the original LeNet architecture. The accuracy of species identification by LeNet3 architecture for the five Korean softwood species was 99.3%. The result showed the automatic wood species identification system is sufficiently fast and accurate as well as small to be deployed to a mobile device such as a smartphone.

Conversion Tools of Spiking Deep Neural Network based on ONNX (ONNX기반 스파이킹 심층 신경망 변환 도구)

  • Park, Sangmin;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.165-170
    • /
    • 2020
  • The spiking neural network operates in a different mechanism than the existing neural network. The existing neural network transfers the output value to the next neuron via an activation function that does not take into account the biological mechanism for the input value to the neuron that makes up the neural network. In addition, there have been good results using deep structures such as VGGNet, ResNet, SSD and YOLO. spiking neural networks, on the other hand, operate more like the biological mechanism of real neurons than the existing activation function, but studies of deep structures using spiking neurons have not been actively conducted compared to in-depth neural networks using conventional neurons. This paper proposes the method of loading an deep neural network model made from existing neurons into a conversion tool and converting it into a spiking deep neural network through the method of replacing an existing neuron with a spiking neuron.

Application and Performance Analysis of Double Pruning Method for Deep Neural Networks (심층신경망의 더블 프루닝 기법의 적용 및 성능 분석에 관한 연구)

  • Lee, Seon-Woo;Yang, Ho-Jun;Oh, Seung-Yeon;Lee, Mun-Hyung;Kwon, Jang-Woo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.23-34
    • /
    • 2020
  • Recently, the artificial intelligence deep learning field has been hard to commercialize due to the high computing power and the price problem of computing resources. In this paper, we apply a double pruning techniques to evaluate the performance of the in-depth neural network and various datasets. Double pruning combines basic Network-slimming and Parameter-prunning. Our proposed technique has the advantage of reducing the parameters that are not important to the existing learning and improving the speed without compromising the learning accuracy. After training various datasets, the pruning ratio was increased to reduce the size of the model.We confirmed that MobileNet-V3 showed the highest performance as a result of NetScore performance analysis. We confirmed that the performance after pruning was the highest in MobileNet-V3 consisting of depthwise seperable convolution neural networks in the Cifar 10 dataset, and VGGNet and ResNet in traditional convolutional neural networks also increased significantly.