• Title/Summary/Keyword: VGG

Search Result 187, Processing Time 0.026 seconds

Performance Comparison of Commercial and Customized CNN for Detection in Nodular Lung Cancer (결절성 폐암 검출을 위한 상용 및 맞춤형 CNN의 성능 비교)

  • Park, Sung-Wook;Kim, Seunghyun;Lim, Su-Chang;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.729-737
    • /
    • 2020
  • Screening with low-dose spiral computed tomography (LDCT) has been shown to reduce lung cancer mortality by about 20% when compared to standard chest radiography. One of the problems arising from screening programs is that large amounts of CT image data must be interpreted by radiologists. To solve this problem, automated detection of pulmonary nodules is necessary; however, this is a challenging task because of the high number of false positive results. Here we demonstrate detection of pulmonary nodules using six off-the-shelf convolutional neural network (CNN) models after modification of the input/output layers and end-to-end training based on publicly databases for comparative evaluation. We used the well-known CNN models, LeNet-5, VGG-16, GoogLeNet Inception V3, ResNet-152, DensNet-201, and NASNet. Most of the CNN models provided superior results to those of obtained using customized CNN models. It is more desirable to modify the proven off-the-shelf network model than to customize the network model to detect the pulmonary nodules.

Sparse Feature Convolutional Neural Network with Cluster Max Extraction for Fast Object Classification

  • Kim, Sung Hee;Pae, Dong Sung;Kang, Tae-Koo;Kim, Dong W.;Lim, Myo Taeg
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2468-2478
    • /
    • 2018
  • We propose the Sparse Feature Convolutional Neural Network (SFCNN) to reduce the volume of convolutional neural networks (CNNs). Despite the superior classification performance of CNNs, their enormous network volume requires high computational cost and long processing time, making real-time applications such as online-training difficult. We propose an advanced network that reduces the volume of conventional CNNs by producing a region-based sparse feature map. To produce the sparse feature map, two complementary region-based value extraction methods, cluster max extraction and local value extraction, are proposed. Cluster max is selected as the main function based on experimental results. To evaluate SFCNN, we conduct an experiment with two conventional CNNs. The network trains 59 times faster and tests 81 times faster than the VGG network, with a 1.2% loss of accuracy in multi-class classification using the Caltech101 dataset. In vehicle classification using the GTI Vehicle Image Database, the network trains 88 times faster and tests 94 times faster than the conventional CNNs, with a 0.1% loss of accuracy.

A Comparative Study of Alzheimer's Disease Classification using Multiple Transfer Learning Models

  • Prakash, Deekshitha;Madusanka, Nuwan;Bhattacharjee, Subrata;Park, Hyeon-Gyun;Kim, Cho-Hee;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.209-216
    • /
    • 2019
  • Over the past decade, researchers were able to solve complex medical problems as well as acquire deeper understanding of entire issue due to the availability of machine learning techniques, particularly predictive algorithms and automatic recognition of patterns in medical imaging. In this study, a technique called transfer learning has been utilized to classify Magnetic Resonance (MR) images by a pre-trained Convolutional Neural Network (CNN). Rather than training an entire model from scratch, transfer learning approach uses the CNN model by fine-tuning them, to classify MR images into Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal control (NC). The performance of this method has been evaluated over Alzheimer's Disease Neuroimaging (ADNI) dataset by changing the learning rate of the model. Moreover, in this study, in order to demonstrate the transfer learning approach we utilize different pre-trained deep learning models such as GoogLeNet, VGG-16, AlexNet and ResNet-18, and compare their efficiency to classify AD. The overall classification accuracy resulted by GoogLeNet for training and testing was 99.84% and 98.25% respectively, which was exceptionally more than other models training and testing accuracies.

Rating wrinkled skin using deep learning (딥러닝 기반 주름 평가)

  • Kim, Jin-Sook;Kim, Yongnam;Kim, Duhong;Park, Lae-Jeong;Baek, Ji Hwoon;Kang, Sanggoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.637-640
    • /
    • 2018
  • The paper proposes a new deep network-based model that rates periorbital wrinkles in order to alleviate the shortcomings of the evaluation by human experts as well as to facilitate the automation. Periorbital wrinkles still need to be classified by human experts. Furthermore, the classification results from experts are different from each other in many cases due to the inter-interpreter variability and the absence of quantification criteria. Unlike existing classification methods which classify original images, the proposed model consists of a cascade of two deep networks: U-Net for the enhancement of wrinkles on an input image and VGG16 for final classification based on the wrinkle information. Experiments of the proposed model are made with a data set that consists of 433 images rated by experts, showing the promising performance.

Camera-based Dog Unwanted Behavior Detection (영상 기반 강아지의 이상 행동 탐지)

  • Atif, Othmane;Lee, Jonguk;Park, Daehee;Chung, Yongwha
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.419-422
    • /
    • 2019
  • The recent increase in single-person households and family income has led to an increase in the number of pet owners. However, due to the owners' difficulty to communicate with them for 24 hours, pets, and especially dogs, tend to display unwanted behavior that can be harmful to themselves and their environment when left alone. Therefore, detecting those behaviors when the owner is absent is necessary to suppress them and prevent any damage. In this paper, we propose a camera-based system that detects a set of normal and unwanted behaviors using deep learning algorithms to monitor dogs when left alone at home. The frames collected from the camera are arranged into sequences of RGB frames and their corresponding optical flow sequences, and then features are extracted from each data flow using pre-trained VGG-16 models. The extracted features from each sequence are concatenated and input to a bi-directional LSTM network that classifies the dog action into one of the targeted classes. The experimental results show that our method achieves a good performance exceeding 0.9 in precision, recall and f-1 score.

Wood Classification of Japanese Fagaceae using Partial Sample Area and Convolutional Neural Networks

  • FATHURAHMAN, Taufik;GUNAWAN, P.H.;PRAKASA, Esa;SUGIYAMA, Junji
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.491-503
    • /
    • 2021
  • Wood identification is regularly performed by observing the wood anatomy, such as colour, texture, fibre direction, and other characteristics. The manual process, however, could be time consuming, especially when identification work is required at high quantity. Considering this condition, a convolutional neural networks (CNN)-based program is applied to improve the image classification results. The research focuses on the algorithm accuracy and efficiency in dealing with the dataset limitations. For this, it is proposed to do the sample selection process or only take a small portion of the existing image. Still, it can be expected to represent the overall picture to maintain and improve the generalisation capabilities of the CNN method in the classification stages. The experiments yielded an incredible F1 score average up to 93.4% for medium sample area sizes (200 × 200 pixels) on each CNN architecture (VGG16, ResNet50, MobileNet, DenseNet121, and Xception based). Whereas DenseNet121-based architecture was found to be the best architecture in maintaining the generalisation of its model for each sample area size (100, 200, and 300 pixels). The experimental results showed that the proposed algorithm can be an accurate and reliable solution.

A Study on the Risk of Propeller Cavitation Erosion Using Convolutional Neural Network (합성곱 신경망을 이용한 프로펠러 캐비테이션 침식 위험도 연구)

  • Kim, Ji-Hye;Lee, Hyoungseok;Hur, Jea-Wook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.129-136
    • /
    • 2021
  • Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the risk of cavitation erosion on the propeller, we implement a deep learning algorithm based on a convolutional neural network. We train and verify it using the model tests results, including cavitation characteristics of various ship types. Here, we adopt the validated well-known networks such as VGG, GoogLeNet, and ResNet, and the results are compared with the expert's qualitative prediction results to confirm the feasibility of the prediction algorithm using a convolutional neural network.

Power-Efficient DCNN Accelerator Mapping Convolutional Operation with 1-D PE Array (1-D PE 어레이로 컨볼루션 연산을 수행하는 저전력 DCNN 가속기)

  • Lee, Jeonghyeok;Han, Sangwook;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.2
    • /
    • pp.17-26
    • /
    • 2022
  • In this paper, we propose a novel method of performing convolutional operations on a 2-D Processing Element(PE) array. The conventional method [1] of mapping the convolutional operation using the 2-D PE array lacks flexibility and provides low utilization of PEs. However, by mapping a convolutional operation from a 2-D PE array to a 1-D PE array, the proposed method can increase the number and utilization of active PEs. Consequently, the throughput of the proposed Deep Convolutional Neural Network(DCNN) accelerator can be increased significantly. Furthermore, the power consumption for the transmission of weights between PEs can be saved. Based on the simulation results, the performance of the proposed method provides approximately 4.55%, 13.7%, and 2.27% throughput gains for each of the convolutional layers of AlexNet, VGG16, and ResNet50 using the DCNN accelerator with a (weights size) x (output data size) 2-D PE array compared to the conventional method. Additionally the proposed method provides approximately 63.21%, 52.46%, and 39.23% power savings.

Analysis of Weights and Feature Patterns in Popular 2D Deep Neural Networks Models for MRI Image Classification

  • Khagi, Bijen;Kwon, Goo-Rak
    • Journal of Multimedia Information System
    • /
    • v.9 no.3
    • /
    • pp.177-182
    • /
    • 2022
  • A deep neural network (DNN) includes variables whose values keep on changing with the training process until it reaches the final point of convergence. These variables are the co-efficient of a polynomial expression to relate to the feature extraction process. In general, DNNs work in multiple 'dimensions' depending upon the number of channels and batches accounted for training. However, after the execution of feature extraction and before entering the SoftMax or other classifier, there is a conversion of features from multiple N-dimensions to a single vector form, where 'N' represents the number of activation channels. This usually happens in a Fully connected layer (FCL) or a dense layer. This reduced 2D feature is the subject of study for our analysis. For this, we have used the FCL, so the trained weights of this FCL will be used for the weight-class correlation analysis. The popular DNN models selected for our study are ResNet-101, VGG-19, and GoogleNet. These models' weights are directly used for fine-tuning (with all trained weights initially transferred) and scratch trained (with no weights transferred). Then the comparison is done by plotting the graph of feature distribution and the final FCL weights.

Food Detection by Fine-Tuning Pre-trained Convolutional Neural Network Using Noisy Labels

  • Alshomrani, Shroog;Aljoudi, Lina;Aljabri, Banan;Al-Shareef, Sarah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.182-190
    • /
    • 2021
  • Deep learning is an advanced technology for large-scale data analysis, with numerous promising cases like image processing, object detection and significantly more. It becomes customarily to use transfer learning and fine-tune a pre-trained CNN model for most image recognition tasks. Having people taking photos and tag themselves provides a valuable resource of in-data. However, these tags and labels might be noisy as people who annotate these images might not be experts. This paper aims to explore the impact of noisy labels on fine-tuning pre-trained CNN models. Such effect is measured on a food recognition task using Food101 as a benchmark. Four pre-trained CNN models are included in this study: InceptionV3, VGG19, MobileNetV2 and DenseNet121. Symmetric label noise will be added with different ratios. In all cases, models based on DenseNet121 outperformed the other models. When noisy labels were introduced to the data, the performance of all models degraded almost linearly with the amount of added noise.