• 제목/요약/키워드: VERTICAL REACTION FORCE

검색결과 212건 처리시간 0.026초

전방 점프 착지 시 만성 발목 불안정성이 자세 조절에 미치는 영향 (The Effects of Chronic Ankle Instability on Postural Control during Forward Jump Landing)

  • Kim, Kew-wan;Jeon, Kyoungkyu;Park, Seokwoo;Ahn, Seji
    • 한국운동역학회지
    • /
    • 제32권1호
    • /
    • pp.9-16
    • /
    • 2022
  • Objective: The purpose of this study was to investigate how the chronic ankle instability affects postural control during forward jump landing. Method: 20 women with chronic ankle instability (age: 21.7 ± 1.6 yrs, height: 162.1 ± 3.7 cm, weight: 52.2 ± 5.8 kg) and 20 healthy adult women (age: 21.8 ± 1.6 yrs, height: 161.9 ± 4.4 cm, weight: 52.9 ± 7.2 kg) participated in this study. For the forward jump participants were instructed to stand on two legs at a distance of 40% of their body height from the center of force plate. Participants were jump forward over a 15 cm hurdle to the force plate and land on their non-dominant or affected leg. Kinetic and kinematic data were obtained using 8 motion capture cameras and 1 force plates and joint angle, vertical ground reaction force and center of pressure. All statistical analyses were using SPSS 25.0 program. The differences in variables between the two groups were compared through an independent sample t-test, and the significance level was to p < .05. Results: In the hip and knee joint angle, the CAI group showed a smaller flexion angle than the control group, and the knee joint valgus angle was significantly larger. In the case of ankle joint, the CAI group showed a large inversion angle at all events. In the kinetic variables, the vGRF was significantly greater in the CAI group than control group at IC and mGRF. In COP Y, the CAI group showed a lateral shifted center of pressure. Conclusion: Our results indicated that chronic ankle instability decreases the flexion angle of the hip and knee joint, increases the valgus angle of the knee joint, and increases the inversion angle of the ankle joint during landing. In addition, an increase in the maximum vertical ground reaction force and a lateral shifted center of pressure were observed. This suggests that chronic ankle instability increases the risk of non-contact knee injury as well as the risk of lateral ankle sprain during forward jump landing.

골프스윙 시 지면반력 크기와 시간 차이가 클럽헤드 속도에 미치는 영향 (Effects of Clubhead Velocity on GRF Magnitude and Time during 7-iron Swing)

  • Woo, Byung Hoon
    • 한국운동역학회지
    • /
    • 제30권1호
    • /
    • pp.27-35
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the influence of clubhead velocity through regression analysis on the magnitude and time difference of the forward-backward, mediolateral, and vertical ground reaction peak forces generated by force plate during golf swing. Method: 16 subjects (age: 20.5±4.2 yrs, height: 176.0±5.4 cm, weight: 77.8±5.9 kg, handy: 2.4±1.7) who is elite golf player in high school and university, participated in this study. The study method adopted three-dimensional analysis with 8 cameras and ground reaction force measurement with two force plate. The analysis variables were clubhead velocity, and ground reaction analysis variables set four events in each graph based on the peak forces commonly generated in Fx, Fy, and Fz graphs of the ground reaction data during the golf swing. Results: As a result of analyzing the influence of ground reaction magnitude difference on clubhead velocity, the influence on clubhead velocity was ym4, zm1, xm4, zm2. The larger ym4, xm4, zm1, the fasterthe clubhead velocity, but the smallerthe zm2, the faster the clubhead velocity. And in time difference, the influence on the clubhead velocity was in the order of xt4, zt1, zt3. The shorter xt4, zt1, zt3 showed faster clubhead velocity. Conclusion: The leftfoot played a leading role in increasing the velocity of the clubhead. Although the result was caused by the interaction of the right foot and the left foot during the swing, the role of the left foot is relatively large.

철도차량용 공기 스프링의 정적 특성 시뮬레이션 (Simulation of Static Characteristics of Railway Vehicle's Airspring)

  • 허신;구정서;우창수;김유일
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.15-24
    • /
    • 1996
  • In this study, we performed the static analysis of a cord-reinforced rubber airspring and generated the three-dimensional half-symmetry model which use the finite-strain shell elements to model the airbag. the three-dimensional hydrostatic fluid elements to model the air-filled cavity, and the rebar elements to model the multi-ply nylon reinforcement of airbag. In addition, a three-dimensional rigid surface is used to define the contact between the airspring and metal bead. The air inside the airspring cavity has been modeled as a compressible fluid satisfying the ideal gas law. The conclusions of this study are as follows. 1) In the pressurization step of analysis, we could predict the change of vertical reaction force, cavity volume and pressure within the airspring. 2) In the second step of analyzing vertical static stiffness, the increase of the vertical load increases the vertical stiffness. 3) In case of changing the angle of nylon cord, the increase the angle of nylon cord increases the vertical stiffness.

  • PDF

8주간의 맵시 운동 프로그램이 중년여성들의 보행 동작 시 지면반력 요인들에 미치는 영향 (Effect of a Maepsi Exercise Program on the Ground Reaction Force Variables of middle-aged women during Gait)

  • 박희준;권문석
    • 한국응용과학기술학회지
    • /
    • 제38권3호
    • /
    • pp.762-770
    • /
    • 2021
  • 본 연구의 목적은 신체 전신 운동인 맵시 운동 프로그램을 중년여성들에게 8주간 적용하여 보행 시 수직 지면반력 크기, 발생시간, 압력 중심 요인들에 미치는 영향을 분석하는데 있었다. 본 연구의 피험자로 운동군 13명(연령, 41±4.4 세; 신장, 162.5±5.8 cm; 체중, 57.8±6.7 kg; 신체질량지수, 21.9±2.4 kg/m2), 대조군 12명(연령, 41.1±5.6 세; 신장, 160.9±5.5 cm; 체중, 576.2±8.1 kg; 신체질량 지수, 21.7±2.9 kg/m2) 총 25명이 참여하였다. 운동군은 7영역 23종 77동작의 맵시운동 프로그램을 8주간 주 3회 실시하였다. 보행 시 지면반력 요인들의 검증을 위하여 Two-way repeated measures ANOVA를 실시하였으며, 사후검증은 bonferroni adjustment로 분석하였다(a=.05). 맵시 운동 프로그램의 운동군은 보행 시 FMWA와 FPO 시점까지의 소요 시간, FMWA와 FPO에서 발생한 수직 지면반발력 그리고 AP 방향 COP의 RMS 요인들에서 대조군에 비해 상대적으로 큰 수치를 나타내었다. 그러므로 8주간의 맵시운동 프로그램은 보행을 수행하는 중년여성들의 가속과 감속 운동 기능을 향상시킨 것으로 나타났다.

배구 제자리 점프 블로킹 착지 시 숙련도에 따른 수직지면반력 변인 분석 (Analysis of the Vertical GRF Variables during Landing from Vertical Jump Blocking in Volleyball)

  • 염창홍;박영훈;서국웅
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.57-64
    • /
    • 2007
  • The purpose of this study was to investigate comparative analysis of the vertical ground reaction force variables during landing from vertical jump blocking in volleyball through GRF analysis system. The subjects participated in this study were 6 male university volleyball player and 6 male acted as a control group. The results are as follows: 1. The skilled group was longer than the unskilled group in flight time during vertical jump blocking. 2. The skilled group was faster than the unskilled group in tFz2 during landing from vertical jump blocking. 3. The skilled group was higher than the unskilled group in Fz2 during landing from vertical jump blocking. 4. The skilled group was higher than the unskilled group in Fz2LR during landing from vertical jump blocking. 5. The skilled group was higher than the unskilled group in impulse during landing from vertical jump blocking. Consequently, during landing from vertical jump, the landing strategy of the skilled group was found as a form of a stiff landing. Therefore, this landing strategy will be required to strengthen of hip and knee extensors and ankle plantar flexors for injury prevention.

보행스피드에 대한 상체 공헌도의 연령에 따른 변화 (Age-Related Change of Upper Body Contribution to Walking Speed)

  • 배영상
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.27-36
    • /
    • 2007
  • The purpose of this study was to investigate the effect of the upper body in order to increase a propulsive force in the old's walking. The subjects were each 10 males, the latter term of the aged and former term of the aged. There were three walking speeds of slow(about 5km/h), medium(about 6km/h), and maximum speed(about 7km/h). The subjects walking 11m were filmed the 5m section (from 3m to 8m) by 2-video cameras using three dimensional cinematography. And we computed different mechanical quantities and especially computed the relative momentum in order to achieve this study's aim. In this study, we was able to acquire some knowledge. The step length and step frequency increased in proportion to the walking speed, and the faster walking speed, the shorter ratio of supporting time( both legs supporting time/one step length time). When it was one leg support phase, the torso was indicated to generate the momentum in order to produce the propulsive force of walking. The upper and lower body had a cooperative relation for walking such as keeping step rate with the arms to legs and maintaining the body balance. The opposition phase for upward-and-downward direction of the torso and arms in walking was functioned to prevent the increase rapidly toward vertical direction of the center of gravity. The arms had contributed to coordinate the tempo of legs and the posture maintenance of the upper body. And by absorbing the relative momentum from the upper torso with arms to the lower torso, it had the rhythmical movement on upward-and-downward direction reducing the vertical reaction force. On account of the relations of absorption and generation of the propulsive force and the production of vertical impulse in the lower torso when walking by maximum speed, it was showed that the function of lower torso was come up as important problem for the mechanical posture stability and propulsive force coordination.

신.구형도마에서 1/1Turn, Stretched, Tucked 기술수행 시 운동역학적 분석 (Comparative Analysis of Biomechanical Factors in Performing Techniques of 1/1Turn, Stretched, and Tucked on the Old Vaulting Horse and the New Vaulting Table)

  • 김지태;허성규
    • 한국운동역학회지
    • /
    • 제16권4호
    • /
    • pp.135-145
    • /
    • 2006
  • The aim of this study was to find out the differences of biomechanical factors from touching down the vaulting board to landing when techniques of 1/1Turn, stretched, and Tucked were performed on the old vaulting horse and on the new vaulting table. Three national representative men gymnasts were sampled for this study. Three dimension motion analyses by means of six Sony PD-150 video cameras with the velocity of 60 fps were used. As a result of analyzing the kinetic data from two kind of vaulting table, the following conclusions were made. 1. There was not significant differences of angular momentum between the old and the new vaulting table in all three techniques except the phase of stepping on the vaulting board and contacting the vaulting horse in the Tucked technique. IN the two phases above, the angular momentum in the new vaulting table was greater than that of the old vaulting horse. 2. There were few significant differences between the old and the new vaulting horses in the horizontal and vertical reaction force according to techniques when stepping was performed. However, it appeared tendency that the horizontal and vertical reaction force in the new vaulting table was a little greater than that of the old vaulting horse when the 1/1Turn, the Stretched and the Tucked were performed.

Analysis of the Plantar Pressure on the Flat and Slope Walking by Insole Type

  • Kim, Bu Gan;Lee, Joong Sook;Yang, Jeong Ok;Lee, Bom Jin
    • 한국운동역학회지
    • /
    • 제28권3호
    • /
    • pp.165-173
    • /
    • 2018
  • Objective: The purpose of this study is to provide biomechanical basis data for the analysis of the maximum vertical ground reaction force, the maximum plantar pressure, the average plantar pressure, and the contact area according to the type of the insole through the insole insertion type foot pressure gauge. Method: In the treadmill, the slope was set at 10%, the first type A was worn at a walking speed of 3.5 km / h, and then walking was carried out using B, C, and D types. Data from 20 boots with consistent walking were extracted and plantar pressure data were collected and analyzed. Results: Functional insole was more effective than conventional insole for maximum vertical ground reaction force, maximum plantar pressure, average plantar pressure, and contact area at 10% of treadmill ramps. Conclusion: In this study, D-type insole supports the cushion in the middle part and supports the heel cup with hardness in the hind part, so that it is the most effective insole by lowering the plantar pressure and dispersing it more widely.

Effect of Gender Difference on the Functional Asymmetry during Preferred Walking Speed

  • Hyun, Seunghyun;Ryew, Checheong
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.49-57
    • /
    • 2020
  • We have not identified on what gender difference during gait at a pace of one's preferred velocity effects on the function of bilateral lower limb. This study was undertaken to investigate a difference of gait strategy by gender during gait at a one's preferred velocity of participants of adult male and female (n=20). Cinematographic data for motion analysis, ground reaction force (GRF) variables, and muscle volume of lower limb were analyzed. Significant difference of variables on movement of center of mass whole body, joint angle and moment of lower limb, and ground reaction force were tested by 2-way ANOVA analysis (P<0.05). Male group showed more muscle volume than female, and both showed more volume in dominant leg than non-dominant. Main effect by bilateral leg during gait showed higher difference in right than left leg in change of vertical position of center of mass (maximal, minimal). Main effect by gender in vertical change of position and velocity of center of mass showed higher difference in male than female (maximal, minimal). Hip joint showed more flexed and extended angle in male than female, and also dorsiflexion of ankle and flexion moment of knee and hip joint showed higher in male than female group. Therefore, this result was assumed that dominant showed furthermore more contribution for propulsive function than non-dominant leg. Gender difference showed in strategy controlling of biomechanical characteristics, and perhaps influenced by muscle volume.

슬개대퇴동통증후가 성인 여성의 드롭랜딩 시 하지 주요관절의 운동역학적 변화에 미치는 영향 (Effects of Kinematics and Kinetics of the Lower Extremities Joint during Drop Landing in Adult Women with Patellofemoral Pain Syndrome)

  • Jeon, Kyoungkyu;Yeom, Seunghyeok
    • 한국운동역학회지
    • /
    • 제31권1호
    • /
    • pp.64-71
    • /
    • 2021
  • Objective: This study investigated the different in isokinetic peak strength of the knee joint, and kinetics and kinematics in drop landing pattern of lower limb between the patellofemoral pain syndrome (PFPS) patients and normal. Method: 30 adult females were divided into the PFPS (age: 23.13±2.77 yrs; height: 160.97±3.79 cm, weight: 51.19±4.86 kg) and normal group (age: 22.80±2.54 yrs, height: 164.40±5.77 cm, weight: 56.14±8.16 kg), with 15 subjects in each group. To examine the knee isokinetic peak strength, kinematics and kinetics in peak vertical ground reaction force during drop landing. Results: The knee peak torque (Nm) and relative strength (%) were significantly weaker PFPS group than normal group. In addition, PFPS group had significantly greater hip flexion angle (°) than normal group. Moreover, normal group had significantly greater moment of hip abduction, hip internal rotation, and left ankle eversion than PFPS group, and PFPS group had significantly greater moment of knee internal rotation. Finally, there was significant differences between the groups at anteroposterior center of pressure. Conclusion: The PFPS patients had weakened knee strength, and which can result in an unstable landing pattern and cause of more stress in the knee joints despite to effort of reduce vertical ground reaction force.