• Title/Summary/Keyword: VECs

Search Result 3, Processing Time 0.022 seconds

An Analysis on the VECs(Virtual Export Channels) in e-Trade (전자무역에서의 가상수출채널 분석)

  • Cho, Won-Gil
    • International Commerce and Information Review
    • /
    • v.7 no.3
    • /
    • pp.177-191
    • /
    • 2005
  • This paper makes a valuable contribution to understanding how the Internet may interface with existing channels to export markets. It classifies the market and firm-level capabilities that may have an impact on how effectively firms can use a virtual channel to export markets(VECs). The most important findings of the paper are that it matters less what function the Internet serve-whether it provides information, tries to build interactive relationships or is used to sell products or services- than hoe fufills its role. Finally, the Internet can facilitate direct channels to market. Export sales ability is essential, and is more important the length of time spent exporting. The Internet to add value to existing export channels.

  • PDF

Migration with Load Balancing Based on Reinforcement Learning in Vehicular Edge Computing (차량 엣지 컴퓨팅에서 로드 밸런싱을 고려한 강화학습 기반의 마이그레이션)

  • Moon, Sungwon;Lim, Yujin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.66-69
    • /
    • 2021
  • 최근 실시간 응답 및 처리에 민감한 서비스들이 급증하면서 멀티액세스 엣지 컴퓨팅(MEC)이 차세대 기술로 주목받고 있다. 사용자들의 잦은 이동성 때문에 MEC 서버들 사이에서의 마이그레이션은 중요한 문제로 다뤄진다. 본 논문에서는 이동성이 많은 차량 엣지 컴퓨팅 환경을 고려하였으며, 강화학습 기법인 Q-learning 을 사용하여 마이그레이션 여부 및 대상을 결정하는 기법을 제안하였다. 제안 기법의 목적은 지연 제약조건을 만족시키면서 차량 엣지 컴퓨팅 서버(VECS) 사이의 로드 밸런싱을 최적화하는 것이다. 제안 기법의 성능 비교를 통하여 다른 기법들보다 로드 밸런싱 측면에서 약 22-30%, 지연 제약조건 만족도 측면에서 약 20-31%로 더 좋은 성능을 보임을 확인하였다.

Task Migration in Cooperative Vehicular Edge Computing (협력적인 차량 엣지 컴퓨팅에서의 태스크 마이그레이션)

  • Moon, Sungwon;Lim, Yujin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.12
    • /
    • pp.311-318
    • /
    • 2021
  • With the rapid development of the Internet of Things(IoT) technology recently, multi-access edge computing(MEC) is emerged as a next-generation technology for real-time and high-performance services. High mobility of users between MECs with limited service areas is considered one of the issues in the MEC environment. In this paper, we consider a vehicle edge computing(VEC) environment which has a high mobility, and propose a task migration algorithm to decide whether or not to migrate and where to migrate using DQN, as a reinforcement learning method. The objective of the proposed algorithm is to improve the system throughput while satisfying QoS(Quality of Service) requirements by minimizing the difference between queueing delays in vehicle edge computing servers(VECSs). The results show that compared to other algorithms, the proposed algorithm achieves approximately 14-49% better QoS satisfaction and approximately 14-38% lower service blocking rate.