• Title/Summary/Keyword: VDS 통행시간

Search Result 10, Processing Time 0.027 seconds

A Path Travel Time Estimation Study on Expressways using TCS Link Travel Times (TCS 링크통행시간을 이용한 고속도로 경로통행시간 추정)

  • Lee, Hyeon-Seok;Jeon, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.209-221
    • /
    • 2009
  • Travel time estimation under given traffic conditions is important for providing drivers with travel time prediction information. But the present expressway travel time estimation process cannot calculate a reliable travel time. The objective of this study is to estimate the path travel time spent in a through lane between origin tollgates and destination tollgates on an expressway as a prerequisite result to offer reliable prediction information. Useful and abundant toll collection system (TCS) data were used. When estimating the path travel time, the path travel time is estimated combining the link travel time obtained through a preprocessing process. In the case of a lack of TCS data, the TCS travel time for previous intervals is referenced using the linear interpolation method after analyzing the increase pattern for the travel time. When the TCS data are absent over a long-term period, the dynamic travel time using the VDS time space diagram is estimated. The travel time estimated by the model proposed can be validated statistically when compared to the travel time obtained from vehicles traveling the path directly. The results show that the proposed model can be utilized for estimating a reliable travel time for a long-distance path in which there are a variaty of travel times from the same departure time, the intervals are large and the change in the representative travel time is irregular for a short period.

Real-time Travel Time Estimation Model Using Point-based and Link-based Data (지점과 구간기반 자료를 활용한 실시간 통행시간 추정 모형)

  • Yu, Jeong-Whon
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.155-164
    • /
    • 2008
  • It is critical to develop a core ITS technology such as real-time travel time estimation in order that the efficient use of the ITS implementation can be achieved as the ITS infrastructure and relevant facilities are broadly installed in recent years. The provision of travel time information in real-time allows travellers to make informed decisions and hence not only the traveller's travel utilities but also the road utilization can be maximized. In this paper, a hybrid model is proposed to combine VDS and AVI which have different characteristics in terms of space and time dimensions. The proposed model can incorporate the immediacy of VDS data and the reality of AVI data into one single framework simultaneously. In addition, the solution algorithm is made to have no significant computational burden so that the model can be deployable in real world. A set of real field data is used to analyze the reliability and applicability of the proposed model. The analysis results suggest that the proposed model is very efficient computationally and improves the accuracy of the information provided, which demonstrates the real-time applicability of the proposed model. In particular, the data fusion methodology developed in this paper is expected to be used more widely when a new type of traffic data becomes available.

  • PDF

A Study of Data Preprocessing Algorithm Using TCS/HI-PASS Data (TCS/HI-PASS 데이터를 이용한 전처리 알고리즘 구현에 관한 연구)

  • Jeong, Hyeon-Seok;Oh, Sang-Seok;Min, Sung-Gi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1005-1008
    • /
    • 2011
  • 본 논문에서는 교통 이력자료의 시공간 데이터를 활용하여 교통 분석 및 예측에 필요한 신뢰성 높은 데이터를 제공하기 위한 TCS/HI-PASS 전처리 알고리즘을 제안한다. 시공간 데이터의 전처리 알고리즘은 각종 교통정보에 이용되고 있으며, 그 중 대표적으로 활용되고 있는 것이 차량 검지기(VDS)를 통해 수집된 교통량, 속도, 점유율 정보이다. 이러한 정보에 가공처리 알고리즘을 적용하여 공간평균속도 기반의 통행시간을 산정하고 있으며, 고속도로 통행료 수납시스템(TCS)으로 부터는 출발영업소와 도착영업소의 진 출입시간을 기반으로 평균통행시간을 산정하고 있다. 본 연구에서는 차량 검지기(VDS) 데이터와 기존 TCS 데이터의 전처리 알고리즘을 분석하여 TCS와 HI-PASS 데이터 기반의 개선된 전처리 알고리즘을 설계, 구현하였다.

Design of Travel Time Forecasting Model Based on TCS Data Characteristics (고속도로 통행료 수납자료의 특성을 반영한 통행시간 예측 모형 설계)

  • Kim, Dong-Keun;Choi, Jin-Woo;Kim, Tae-Min;Park, Jin-Woong;Kim, Hyo-Min;Yang, Young-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.1595-1597
    • /
    • 2011
  • 과거에는 고속도로 상에 일정간격으로 설치하여 운영 중인 VDS(Vehicle Detection System)에서 주기적으로 검지되는 지점자료나 실제로 도로를 주행하면서 교통상황을 측정하는 프로브 차량(Probe Vehicle)들을 이용하여 통행시간을 추정해 왔으나 단순한 현시점에서의 통행시간을 나타내는 점이나 설치구간이 조밀하지 못한 곳에서의 정확성 등 많은 문제점이 있어왔다. 이에 본 연구에서는 고속도로 통행료 수납자료(Toll Collection System)를 출발시각 기준으로 정렬하고, 이를 Fuzzy c-means 클러스터링 기법을 사용하여 고속도로 통행료 수납자료의 특성에 따라 분류한 후 하나의 대푯값으로 추출하여 Kalman Filter 기법에 적용하는 고속도로 통행시간 예측 모형을 설계한다.

Determining Optimal Aggregation Interval Size for Travel Time Estimation and Forecasting with Statistical Models (통행시간 산정 및 예측을 위한 최적 집계시간간격 결정에 관한 연구)

  • Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.3
    • /
    • pp.55-76
    • /
    • 2000
  • We propose a general solution methodology for identifying the optimal aggregation interval sizes as a function of the traffic dynamics and frequency of observations for four cases : i) link travel time estimation, ii) corridor/route travel time estimation, iii) link travel time forecasting. and iv) corridor/route travel time forecasting. We first develop statistical models which define Mean Square Error (MSE) for four different cases and interpret the models from a traffic flow perspective. The emphasis is on i) the tradeoff between the Precision and bias, 2) the difference between estimation and forecasting, and 3) the implication of the correlation between links on the corridor/route travel time estimation and forecasting, We then demonstrate the Proposed models to the real-world travel time data from Houston, Texas which were collected as Part of the Automatic Vehicle Identification (AVI) system of the Houston Transtar system. The best aggregation interval sizes for the link travel time estimation and forecasting were different and the function of the traffic dynamics. For the best aggregation interval sizes for the corridor/route travel time estimation and forecasting, the covariance between links had an important effect.

  • PDF

Cluster analysis for highway speed according to patterns and effects (고속도로 구간별 통행속도의 패턴과 영향에 따른 군집분석)

  • Kim, Byungsoo;An, Soyoung;Son, Jungmin;Park, Hyemi
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.949-960
    • /
    • 2016
  • This paper uses all sections of highway data (VDS) for two years (Jan. 2014-Dec. 2015), with 15 minute units. The first purpose of this study is to find clusters with similar patterns that appear repeatedly with time variables of month, week and hour. The cluster analysis results indicate a variety of patterns of average traffic speeds by time variables depending on the clusters; subsequently, these can be utilized to model for the forecast of the speed at a specific time. The second purpose is to do cluster analysis for grouping sections by effect nets that are closely related to each other. For the similarity measure we use cross-correlation functions calculated after pre-whitening the speed of each section. The cluster analysis gets 19 clusters, and sections within a cluster are geographically close. These results are expected to help to forecast a real-time speed.

K-factor Prediction in Import and Export Cargo Trucks-Concentrated Expressways by Short-Term VDS Data (단기 VDS자료로 수출입화물트럭이 집중하는 고속도로의 K-factor 추정에 관한 연구)

  • Kim, Tae-Gon;Heo, In-Seok;Jeon, Jae-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.1
    • /
    • pp.65-71
    • /
    • 2014
  • Gyeongbu and Namhae expressways in the country, are the major arterial highways which are connected with the Busan port in the north-south and east-west directions, respectively, and required to study the traffic characteristics about the hourly volume factors(K-factor) by concentrated midium-size and large-size cargo trucks of 20% or higher in expressways. We therefore attempted to predict the K-factor in expressways through the correlation analysis between K-factor and K-factor estimates on the basis of the short-term VDS data collected at the basic segments of the above major expressways. As a result, power model appeared to be appropriate in predicting K-factor by the K-factor estimate based on VDS data for 7 days with a high explanatory power and validity.

A Study on the Spacing Distrubution based on Relative Speeds between Vehicles -Focused on Uninterrupted Traffic Flow- (차량간 상대속도에 따른 차두거리 분포에 관한 연구 -연속류 교통흐름을 중심으로-)

  • Ma, Chang-Young;Yoon, Tae-Kwan;Kim, Byung-Kwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • This study analyzes traffic data which are collected by VDS(Vehicle Detection System) to research the relationship between spacing distribution and vehicles' relative speed. The collected data are relative speed between preceding and following vehicles, passing time and speed. They are also classified by lane and direction. For the result of the analysis, in the same platoon, we figure out that mean of spacing is 40m, which can be a value to determine section A to D. To compare spacing according to time interval, this study splits time intervals to peak hour and non-peak hour by peak hour traffic volume. In conclusion, vehicles in peak hour are in car following because most drive similar speed as preceding vehicle and they have relatively small spacing. On the other hand, non-peak hour's spacing between vehicles is bigger than that of peak hour. This implies driver's behaviors that the less spacing, the more aggressive and want to reduce their travel time in peak hour, whereas most drive easily in non-peak hour and recreational trip purpose because of less time pressure.

Development of a traffic simulation model analyzing the effects of highway incidents using the CA(Cellular Automata) model (CA(Cellular Automata) 모형을 이용한 고속도로 돌발상황 영향 분석 교통 시뮬레이션 모형 개발)

  • 천승훈;노정현
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.219-227
    • /
    • 2001
  • In this study, the simulation was constructed using CA(Cellular Automata) rule to analyze the effect of incidents, which was verified using real-time VDS data and data collected on the field. The study analyzed the effect of incidents on highways by the simulation. The result appears to be statistically available with 5% of significance level. In order to analyze the effect of incident, the study classified time period of incidents and types of incidents in relation with traffic volume. Also, the effect of each type of incidents was analyzed in terms of time difference in sectional travel and delay time. In conclusion, little effect of incidents on traffic flow is noticed with light traffic volume but it becomes serious as the traffic volume increases. In addition, the delay happens to appear without incidents as the traffic volume increases over 2000 veh/hour. Also, when incidents happened during 45 minutes, the delay was about 425-722 veh·hour.

  • PDF

Prediction of Speed by Rain Intensity using Road Weather Information System and Vehicle Detection System data (도로기상정보시스템(RWIS)과 차량검지기(VDS) 자료를 이용한 강우수준별 통행속도예측)

  • Jeong, Eunbi;Oh, Cheol;Hong, Sungmin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.4
    • /
    • pp.44-55
    • /
    • 2013
  • Intelligent transportation systems allow us to have valuable opportunities for collecting reliable wide-area coverage traffic and weather data. Significant efforts have been made in many countries to apply these data. This study identifies the critical points for classifying rain intensity by analyzing the relationship between rainfall and the amount of speed reduction. Then, traffic prediction performance by rain intensity level is evaluated using relative errors. The results show that critical points are 0.4mm/5min and 0.8mm/5min for classifying rain intensity (slight, moderate, and heavy rain). The best prediction performance is observable when previous five-block speed data is used as inputs under normal weather conditions. On the other hand, previous two or three-block speed data is used as inputs under rainy weather conditions. The outcomes of this study support the development of more reliable traffic information for providing advanced traffic information service.