• Title/Summary/Keyword: VAG

Search Result 18, Processing Time 0.016 seconds

The study on the Igneous Activity in the Southeastern Zone(SE-zone) of the Ogcheon Geosynclinal Belt,Korea(III) (with the Igneous Activity between Naju and Namchang Area) (옥천지향사대(沃川地向斜帶) 동남대(東南帶)에서의 화성활동(火成活動)(III)(나주(羅州)-남창지역(南倉地域)을 중심(中心)으로))

  • Kim, Yong-Jun;Park, Young-Seog;Choo, Seung-Hwan;Oh, Min-Soo;Park, Jay-Bong
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.261-276
    • /
    • 1991
  • The main aspect of this study are to clarify igneous activity of igneous rocks, which is a member of various intrusives and volcanics exposed in Naju-Namchang area of southern central zone of Ogcheon Geosynclinal Belt, southern part of Youngdong-Kwangju depression zone of tectonic provinces in Korea. Naju-Namchang area are subdivided into three rock belts based on occuring of Cretaceous granites. Three rock belts consist of foliated granites, Jurassic granites and Cretaceous granites in central granitic rock belt (C-C), and acidic tuff and lavas in northwest volcanic rock belt(C-NW) and southeast volcanic rock belt(C-SE). Chemical composition of these igneous rocks show mostly similar trend to the Daly's values on Harker diagram and correspond to VAG + Syn-COLG region on Pearce's discrimination diagram. These igneous rocks vary wide range in total REE amount(37.4-221.3ppm) characterized by enriched LREE content and steep negative slope in Eu(-) anomaly. It is concluded each synchronous granites which composed of serveral rock facies is considered to formed by differentiation of co-magma at continental margin, and igneous activity of study area are two more Pre-Cambrian Orogenies, Songrim Disturbance, Daebo Orogeny and Bulkuksa Disturbance.

  • PDF

Lithogeochemistry and Gold Content of Plutonic (고흥 미복산 부근에 분포하는 심성암류의 암석지구화학과 금함량)

  • 윤정한
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.585-597
    • /
    • 1999
  • Plutomic rocks of the Mabogsan, located in the southestern part of the Koheung Eup are composed of granite gneiss, diorite, biotite grantie and granophyre. On the basis of Rb-Ba-Sr diagram, the diorires are plotted from granodiorite to quartz diortie, the biotite granites from granodiortie to anomalous granite and the granophyres in normal granite filed. The plutonic rocks tend to show the I-type characteristics in terns of ACF diagram, $K_2O-Na_2O$ diagram and $Al_2O_3/Na_2O+K_2O+CaO$ diafram, while have values of ilmenite series in magnetic subseptibility. The plutons could have formed in the tectonic environment of VAG+COLG+ORG based on the silica vs. trace element diagrams. Gold contents with major and trace elements have been determined for 21 granophyres, 13 biotite granites and 4 diorites are; (1) for the diorite, the rangs is 0.508~1.73 ppb with an average of 0.5ppb;(2) for the biotite granites, the range is 0.449~13.5ppb with an average of 3 ppb;(3)for the granphyres, the range is 0.508~23.1ppb with an average of 4.5ppb. The gold content of the studied plutons tends to increase from mafic to felsic rocks. Gold contents tend to show positive correlations with those of Ag and Zn, negative correlations with those of As, Ba and Rb. The copper contents of the plutons are comparatively high. Average copper contents of diorite, biotite granite and granophyre are 710ppm, 587ppm and 484ppm, respectively. The copper contents of the plutons tend to have good correlations with those of Ag, Bi and Pb.

  • PDF

Geochemistry and Petrogenesis of Pan-african Granitoids in Kaiama, North Central, Nigeria

  • Aliyu Ohiani Umaru;Olugbenga Okunlola;Umaru Adamu Danbatta;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.259-275
    • /
    • 2023
  • Pan African granitoids of Kaiama is comprised of K-feldspar rich granites, porphyritic granites, and granitic gneiss that are intruded by quartz veins and aplitic veins and dykes which trend NE-SW. In order to establish the geochemical signatures, petrogenesis, and tectonic settings of the lithological units, petrological, petrographical, and geochemical studies was carried out. Petrographic analysis reveals that the granitoids are dominantly composed of quartz, plagioclase feldspar, biotite, and k-feldspar with occasional muscovites, sericite, and opaque minerals that constitute very low proportion. Major, trace, and rare earth elements geochemical data reveal that the rocks have moderate to high silica (SiO2=63-79.7%) and alumina (Al2O3=11.85-16.15) contents that correlate with the abundance of quartz, feldspars, and biotite. The rocks are calc-alkaline, peraluminous (ASI=1.0-<1.2), and S-type granitoids sourced by melting of pre-existing metasedimentary or sedimentary rocks containing Al, Na, and K oxides. They plot dominantly in the WPG and VAG fields suggesting emplacement in a post-collisional tectonic setting. On a multi-element variation diagram, the granitoids show depletion in Ba, K, P, Rb, and Ti while enrichment was observed for Th, U, Nd, Pb and Sm. Their rare-earth elements pattern is characterized by moderate fractionation ((La/Yb)N=0.52-38.24) and pronounced negative Eu-anomaly (Eu/Eu*=0.02-1.22) that points to the preservation of plagioclase from the source magma. Generally, the geochemical features of the granitoids show that they were derived by the partial melting of crustal rocks with some input from greywacke and pelitic materials in a typical post-collisional tectonic setting.

Petrochemistry on igneous rocks in the Mt. Mudeung area (무등산 지역에 분포하는 화성암류의 암석화학)

  • 김용준;박재봉;박병규
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.214-233
    • /
    • 2002
  • Igneous rocks of Mt. Mudeung area are composed of Pre-Cambrian granite gneiss, Triassic hornblende-biotite granodiorite, Jurassic quartz diorite and Cretaceous igneous rocks. The Cretaceous igneous rocks consist of volcanic rocks (Hwasun andesite, Mudeung-san dacite and Dogok rhyolite) and granitic rocks (micrograpic granite and quartz porphyry). Major elements of the Cretaceous igneous rocks represent calc-alkaline rock series and correspond to a series of differentiated products from cogenetic magma. Igneous activity of Mt. Mudeung area started from volcanic activity, and continued to intrusive activity at end of the Cretaceous. In chondrite normalized REE pattern, most of igneous rocks of Mt. Mudeung area show similar pattern of Eu (-) anomaly. This is a characteristic feature of granite in continental margin by tectonic movement. Variation diagrams of total REE vs. La/Yb V vs. SiO$_2$ indicate differentiation and magnetite fractionation sequential trend of Hwasun andesite longrightarrowMudeungsan dacitelongrightarrowquartz porphyry. In mineral composition of these igneous rocks in mt. Mudeung area, composition of plagioclase and biotite coincidence with variation of whole rock composition, and emplacement and consolidation of magma is about 15 km (about 4.9 Kbar) in Jurassic quartz diorite and 2.0~3.2 km (0.6~1.0 Kbar) in Triassic hornblende-biotite granodiorite used by amphibolite geobarometer. Parental magma type of these granitic rocks of nt. Mudeung area corresponds to VAG field in Pearce diagram, and I-type in ACF diagram.

Occurrence and petrochemistry of the granites in the Pocheon-Euijeongbu area (포천-의정부 일대에 분포하는 화강암류의 산상과 암석화학)

  • 윤현수
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.91-103
    • /
    • 1995
  • The study area is located at the middle part of Daebo granitic batholith in the Gyeonggi massif. The geology of the area is mostly composed of Precambrian gneiss complex, coarse- grained middle Jurassic and fine-grained early Cretaceous biotite granites, and Cretaceous small stocks and dykes. The gneiss complex consists mainly of banded gneiss, granitc gneiss, some schist and quartzite. The coarse-grained granite can be divided into greyish granite(Gg1 in the margin and slightly pinkish granite(Gp) in the center. The former is hornblende biotite granite characterized by basic clot and xenolith. The latter is generally garnet biotite granite containing only poor basic clot. The fine-grained granite intruded the coarse-grained granite. The K/Ar biotite ages from the granites belong to middle Jurassic and early Cretaceous. The K/Ar biotite ages and geochemical compositions indicate that Gg and Gp were differenciated from a single magmatic body. The granites are calc-alkali and metaluminous-peraluminous. They are S-type(i1menite series) and partly I-type granitedmagnetite series) formed by melting of relatively fixed source composition. Their tectonic settings belong to the compressional suits and VAG of continental margin.

  • PDF

$\acute{E}$tude du Processus de Morphogen$\grave{e}$se de l'$\hat{I}$le Rocheuse de Baek dans la Ville de Yeosu en Cor$\acute{e}$edu Sud (여수시 백도의 지형형성과정에 대한 고찰)

  • Lee, Jeong Hun
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.627-640
    • /
    • 2013
  • Cette $\acute{e}$tude a pour objet d'analyser le processus de morphogen$\grave{e}$se de l'$\hat{I}$le rocheuse de Baek. Nous y voyons une cl$\acute{e}$ pour apprendre son relief marin et le processus de morphogen$\grave{e}$se des l'$\hat{I}$les m$\acute{e}$ridionales de Cor$\acute{e}$e du Sud. Le granit porphorique qui compose l'$\hat{I}$le rocheuse de Baek est une roche magmatique qui s'est form$\acute{e}$e il y a 60 million d'ann$\acute{e}$es. La cause principale de formation de l'$\hat{I}$le rocheuse de Baek, est une ligne de d$\acute{e}$lit vers le NE-SO et l'ENE-OSO, un soul$\grave{e}$vement de la plaque tectonique et une $\acute{e}$rosion par les vagues. L'$\hat{I}$le rocheuse de Baek pr$\acute{e}$sente un caract$\grave{e}$re d'$\acute{e}$ruption de magma de calc-alcalin par analyse g$\acute{e}$ochimique de son granit porphorique et fait partie du granit de l'arc volcanique. Il s'agit d'un magma qui s'est form$\acute{e}$ dans la subduction pr$\grave{e}$s du continent. Il est aussi n$\acute{e}$ssaire d'examiner un soul$\grave{e}$vement qui est plus $\acute{e}$lev$\acute{e}$ qu' un mouvement ascendant de la surface de la mer $\grave{a}$ l'$\grave{e}$re quaternaire environ de l'$\hat{I}$le rocheuse de Baek malgr$\acute{e}$ que, selon nous, nous y trouvions une faille et une terrasse marine.

  • PDF

Geochemical Characteristics of the Uljin Granitoids in Northeastern Part of the Yeongnam Massif, Korea (영남육괴 북동부 울진지역 화강암류의 지화학적 특성)

  • Wee, SooMeen;Kim, Ji-Young;Lim, Sung-Man
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.313-328
    • /
    • 2013
  • Jurassic granitoids in the northeastern part of the Yeongnam Massif are possibly the result of intensive magmatic activities that occurred in response to subduction of the proto-Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical studies on the granitic rocks are carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the Uljin granitoids in the northeastern part of the Yeongnam Massif indicate that all of the rocks have the characteristics of calcalkaline series in subalkaline field. The overall major element trends show systematic variations in each granitic body, but the source materials of each granitoids seem to have different chemical composition. The Uljin granitoids are different from other granitic rocks, which distributed vicinity of the study area, in the contents of $Al_2O_3$ and trace elements such as Cr, Co, Ni, Sr, Y and Nb. The Uljin granitoids have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but they have low Y and Yb contents. The major ($SiO_2$, $Al_2O_3$, MgO) and trace element (Sr, Y, La, Yb) contents of the Uljin granitoids fall well within the adakitic field. The Uljin granitoids have similar geochemical characteristics, paleotectonic environments and intrusion ages to those of the Yatsuo plutonic rocks of Hida belt located on northwestern part of Japan. Chondrite normalized REE patterns show generally enriched LREEs ($(La/Yb)_{CN}=10.6-103.4$) and are slight negative to flat Eu anomalies. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at the continental margin during the subduction of Izanagi plate in Jurassic period.

Geochemistry and Petrogenesis of Adakitic Granitoids from Bognae Area in the Southwestern Part of the Yeongnam Massif, Korea (영남육괴 남서부 복내지역에 분포하는 아다카이트질 화강암체의 성인 및 지화학적 특성)

  • Wee, Soo-Meen;Park, Jae-Yong
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.427-443
    • /
    • 2009
  • Cretaceous intrusive and extrusive rocks in the southwestern part of the Yeongnam Massif are possibly the result of intensive magmatism which occurred in response to subduction of the Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical and petrological study on the granitic rocks were carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the granitic rocks from the study area indicate that all the rocks have characteristics of calc-alkaline series in the subalkaline field. The overall geochemical features show systematic variations in each granitic body, but the source materials of each granitic body are thought to have been different in their chemical composition. The granodiorites distributed around Donggyori in the Bognae area (DGd) are different from other granitic rocks within the study area in the contents and differentiation trends of $Al_2O_3$ and MgO as well as in the contents of the trace elements such as Ba, Sr, Pb, Ni, Cr and Y DGd have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but low Y and Yb contents. The major and trace element contents of the DGd fall well within the adakitic field, whereas other Cretaceous granites in the study area are plotted in the island arc ADR area in Sr/Y vs. Y diagram. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of Pacific plate. The geochemical and tectonic features reveal that adakite-like signatures of the DGd were generated by the interaction of mantle peridotite and subducted slab-derived adakitic melts (caused by the thermal effect of ridge subduction), and which slightly modified by crustal contamination during emplacement.