• Title/Summary/Keyword: V-notch

Search Result 159, Processing Time 0.022 seconds

SimulationX®-based Modeling for Valve-Plate Notch Design of Variable Swash-Plate Axial Piston Pump (SimulationX®를 이용한 가변 사판식 액셜 피스톤 펌프의 밸브플레이트 노치 최적화에 관한 연구)

  • Lee, San Seong;Chung, Won Jee;Lim, Dong Jae;Cha, Tae Hyung;Kim, Soo Tae;Lee, Jeong Sil;Choi, Kyung Shin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.104-112
    • /
    • 2018
  • Considering the shape of a valve plate in design is important for reducing the pulsation phenomenon, which is a negative factor in pump performance. The purpose of this study is to propose an optimized method for a valve-plate V-type notch of a piston pump by modeling and simulation. The method uses $SimulationX^{(R)}$, a commercial hydraulic analysis program, and to provide data for the designing of the notch. The opening areas are determined by performing kinematic analysis of the notch part where the opening area changes rapidly. After applying the result analysis, the main effects on maximum pressure pulsation and maximum backflow according to the notch design factors are analyzed by using the full factorial method of experimental design. The optimized solutions are derived for the notch design variables, based on the analyzed data.

Quantitative assessment of depth and extent of notch brittle failure in deep tunneling using inferential statistical analysis

  • Lee, Kang-Hyun;Lee, In-Mo;Shin, Young-Jin
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.201-206
    • /
    • 2020
  • A stress-induced brittle failure in deep tunneling generates spalling and slabbing, eventually causing a v-shaped notch formation. An empirical relationship for the depth of the notch to the maximum tangential stress assuming an equivalent circular cross-section was proposed (Martin et al. 1999). While this empirical approach has been well recognized in the industry and used as a design guideline in many projects, its applicability to a non-circular opening is worth revisiting due to the use of equivalent circular profile. Moreover, even though the extent of the notch also contributes to notch failure, it has not been estimated to date. When the estimate of both the depth and the extent of notch are combined, a practical and economically justifiable support design can be achieved. In this study, a new methodology to assess the depth as well as the extent of notch failure is developed. Field data and numerical simulations using the Cohesion Weakening Frictional Strengthening (CWFS) model were collected and correlated with the three most commonly accepted failure criteria (σ13, Dismaxc, σdevcm). For the numerical analyses, the D-shaped tunnel was used since most civil tunnels are built to this profile. Inferential statistical analysis is applied to predict the failure range with a 95% confidence level. Considering its accuracy and simplicity, the new correlation can be used as an enhanced version of failure assessment.

Evaluation of Reheat Cracking Susceptibility with Simulated Heat Affected Zones in Cr-Mo-V Turbine Rotor Steel (CrMoV 터빈로터강에서 모의 열영향부 시험편을 이용한 재열균열 민감도평가)

  • 김광수
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.89-102
    • /
    • 1995
  • The evaluation of reheat cracking susceptibility in CrMoV turbine rotor steel was performed using thermally simulated heat affected zones. The examinations were carried out in terms of microstructural characterization, microhardness measurement and a Charpy type notch opening three point bend test. It was found that reheat cracking susceptibility increased as the peak temperature increased. This effect was due to the combined effects of the carbide dissolution and unrestricted grain growth at 1350.deg. C peak temperature. Reheat cracking susceptibility was estimated based on microhardness measurement and prior austenite grain size. It was established that for this particular material, reheat cracking in coarse grained heat affected zone can be eliminated if the microhardness is below about 360DPH and the grain size is below about 30.mu.m. It is evident that reheat cracking susceptibility can be eliminated or reduced by carefully controlling the welding parameters such that a refined structure is produced in the coarse grained heat affected zone.

  • PDF

Bidirectional LLC-LC Resonant Converter With Notch Filter (노치 필터 적용 양방향 LLC-LC 공진컨버터)

  • Jang, Ki-Chan;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.411-420
    • /
    • 2021
  • In this paper, bidirectional LLC-LC resonant DC-DC converter with notch filters in the primary side of resonant circuits is proposed. Even if resonant capacitors are used on the primary and secondary sides, the proposed converter can operate with the high gain characteristics of the LLC resonant converter without mutual coupling of resonant capacitors, regardless of the direction of power flow. In addition, by applying notch filters, the proposed converter can operate with a wider gain control range and can cope with overload and short circuit. The analysis and operating characteristics of the proposed bidirectional LLC-LC resonant converter are investigated. A 3.3 kW prototyped bidirectional LLC-LC resonant converter connected to 750 VDC buses is designed and tested to verify the validity and applicability of this proposed converter.

An investigation into Weldline Strength According to Induction Heating Conditions (유도가열 조건에 따른 사출성형품 웰드부의 강도 고찰)

  • Son, Dong-Hwi;Seo, Young-Soo;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.441-444
    • /
    • 2009
  • Weldlines are generated during the injection molding process when two or more melt flows are brought into contact. At the welded contact region, a 'V'-shaped notch is formed on the surface of the molded part. This 'V'-notch deteriorates not only surface appearance but also mechanical strength of the molded part. To eliminate or reduce weldlines so as to improve the weldline strength, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. The present study implements high-frequency induction heating in order to rapidly raise mold surface temperature without a significant increase in cycle time. This induction heating enables to local mold heating so as to eliminate or reduce weldlines in an injection-molded plastic part. The effect of induction heating conditions on the weldline strength and surface appearance of an injection-molded part is investigated.

  • PDF

Fracture Mechanical Study on the Charpy V-notch and Fatigue Crack Propagation 8ehavior of Rail Steels (레일강의 샬피거동 및 피로균열 성장거동에 관한 파괴역학적 고찰)

  • Kim, Sung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1319-1327
    • /
    • 1994
  • Since fatigue cracks in rail can be the source of fractures and subsequent derailments, quantitative evaluation of the fatigue behavior and fracture properities due to the analysis results of laboratory test are drawn on the basis for predicting fatigue life and making a decision of safe inspection interval. Charpy V-notch and fracture toughness behavior were evaluated from the results of Charpy impact test. Fatigue test was performed by using CT type specimen under constant amplitude loading, and finally the effects of the following parameters; crack orientation, temperature, and stress ratio, on the fatigue crack growth behavior were studied.

  • PDF

Design of Inchworm Linear Motor Using Design of Experiment (실험계획법을 이용한 인치웜 리니어 모터의 설계)

  • 예상돈;민병현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1041-1044
    • /
    • 2002
  • Inchworm linear motor is one of the ultra precision position apparatuses and has many kinds of forms and structures according to the conditions of working space and range. In this paper, the Inchworm linear motor consists of three PZTs(Piezo-electric transducer), three columns ma two plates. finite element method was used to determine the type or hinges installed in column of inchworm linear motor DOE(Design of experiment) was used to determine the optimal design condition of a column by comparing the von-mises stresses according to the change of thickness of hinge, round of hinge, height of arm, angle of v-notch, round of v-notch and thickness of column. From the result, round of hinge, height of arm and thickness of hinge were determined a effective design parameters.

  • PDF

Statistical Evaluation of Fracture Characteristics of RPV Steels in the Ductile-Brittle Transition Temperature Region

  • Kang, Sung-Sik;Chi, Se-Hwan;Hong, Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.364-376
    • /
    • 1998
  • The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a $K_{IC}$ -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel (RPV) steel. Most of the fracture toughness data were within the 95% confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data.

  • PDF

Minimization of Torque Ripple for an IPMSM with a Notched Rotor Using the Particle Swarm Optimization Method

  • Shin, Pan Seok;Kim, Ho Youn;Kim, Yong Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1577-1581
    • /
    • 2014
  • This paper presents a method to minimize torque ripple of a V-type IPMSM using the PSO (Particle Swarm Optimization) method with FEM. The proposed algorithm includes one objective function and three design variables for a notch on the surface of a rotor. The simulation model of the V-type IPMSM has 3-phases, 8-poles and 48 slots with 2 notches on the one-pole rotor surface. The arc-angle, length and width of the notch are optimized to minimize the torque ripple of the motor. The cogging torque of the model is reduced by 55.6% and the torque ripple is decreased by 15.5 %. Also, the efficiency of the motor is increased by 15.5 %.

Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels

  • Karthick, K.;Malarvizhi, S.;Balasubramanian, V.;Krishnan, S.A.;Sasikala, G.;Albert, Shaju K.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.116-125
    • /
    • 2018
  • Modified 9Cr-1Mo ferritic steel is a preferred material for steam generators in nuclear power plants for their creep strength and good corrosion resistance. Austenitic stainless steels, such as type 316LN, are used in the high temperature segments such as reactor pressure vessels and primary piping systems. So, the dissimilar joints between these materials are inevitable. In this investigation, dissimilar joints were fabricated by the Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. The notch tensile properties and Charpy V-notch impact toughness properties of various regions of dissimilar metal weld joints (DMWJs) were evaluated as per the standards. The microhardness distribution across the DMWJs was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. Inhomogeneous notch tensile properties were observed across the DMWJs. Impact toughness values of various regions of the DMWJs were slightly higher than the prescribed value. Formation of a carbon-enriched hard zone at the interface between the ferritic steel and the buttering material enhanced the notch tensile properties of the heat-affected-zone (HAZ) of P91. The complex microstructure developed at the interfaces of the DMWJs was the reason for inhomogeneous mechanical properties.