• Title/Summary/Keyword: V-Learning

Search Result 454, Processing Time 0.028 seconds

Comparison of Image Classification Performance in Convolutional Neural Network according to Transfer Learning (전이학습에 방법에 따른 컨벌루션 신경망의 영상 분류 성능 비교)

  • Park, Sung-Wook;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1387-1395
    • /
    • 2018
  • Core algorithm of deep learning Convolutional Neural Network(CNN) shows better performance than other machine learning algorithms. However, if there is not sufficient data, CNN can not achieve satisfactory performance even if the classifier is excellent. In this situation, it has been proven that the use of transfer learning can have a great effect. In this paper, we apply two transition learning methods(freezing, retraining) to three CNN models(ResNet-50, Inception-V3, DenseNet-121) and compare and analyze how the classification performance of CNN changes according to the methods. As a result of statistical significance test using various evaluation indicators, ResNet-50, Inception-V3, and DenseNet-121 differed by 1.18 times, 1.09 times, and 1.17 times, respectively. Based on this, we concluded that the retraining method may be more effective than the freezing method in case of transition learning in image classification problem.

Reinforcement Learning Based Energy Control Method for Smart Energy Buildings Integrated with V2G Station (강화학습 기반 V2G Station 연계형 스마트 에너지 빌딩 전력 제어 기법)

  • Seok-Min Choi;Sun-Yong Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.515-522
    • /
    • 2024
  • Energy consumption is steadily increasing, and buildings in particular account for more than 20% of the total energy consumption around the world. As an effort to cost-effectively manage the energy consumption of buildings, many research groups have recently focused on Smart Building Energy Management Systems (BEMS), which are deepening the research depth by applying artificial intelligence(AI). In this paper, we propose a reinforcement learning-based energy control method for smart energy buildings integrated with V2G station, which aims to reduce the total energy cost of the building. The results of performance evaluation based on the energy consumption data measured in the real-world building shows that the proposed method can gradually reduce the total energy costs of the building as the learning process progresses.

RISKY MODULE PREDICTION FOR NUCLEAR I&C SOFTWARE

  • Kim, Young-Mi;Kim, Hyeon-Soo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.663-672
    • /
    • 2012
  • As software based digital I&C (Instrumentation and Control) systems are used more prevalently in nuclear plants, enhancement of software dependability has become an important issue in the area of nuclear I&C systems. Critical attributes of software dependability are safety and reliability. These attributes are tightly related to software failures caused by faults. Software testing and V&V (Verification and Validation) activities are hence important for enhancing software dependability. If the risky modules of safety-critical software can be predicted, it will be possible to focus on testing and V&V activities more efficiently and effectively. It should also make it possible to better allocate resources for regulation activities. We propose a prediction technique to estimate risky software modules by adopting machine learning models based on software complexity metrics. An empirical study with various machine learning algorithms was executed for comparing the prediction performance. Experimental results show SVMs (Support Vector Machines) perform as well or better than the other methods.

Object Detection Using Deep Learning Algorithm CNN

  • S. Sumahasan;Udaya Kumar Addanki;Navya Irlapati;Amulya Jonnala
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.129-134
    • /
    • 2024
  • Object Detection is an emerging technology in the field of Computer Vision and Image Processing that deals with detecting objects of a particular class in digital images. It has considered being one of the complicated and challenging tasks in computer vision. Earlier several machine learning-based approaches like SIFT (Scale-invariant feature transform) and HOG (Histogram of oriented gradients) are widely used to classify objects in an image. These approaches use the Support vector machine for classification. The biggest challenges with these approaches are that they are computationally intensive for use in real-time applications, and these methods do not work well with massive datasets. To overcome these challenges, we implemented a Deep Learning based approach Convolutional Neural Network (CNN) in this paper. The Proposed approach provides accurate results in detecting objects in an image by the area of object highlighted in a Bounding Box along with its accuracy.

The Development of an Intelligent Home Energy Management System Integrated with a Vehicle-to-Home Unit using a Reinforcement Learning Approach

  • Ohoud Almughram;Sami Ben Slama;Bassam Zafar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.87-106
    • /
    • 2024
  • Vehicle-to-Home (V2H) and Home Centralized Photovoltaic (HCPV) systems can address various energy storage issues and enhance demand response programs. Renewable energy, such as solar energy and wind turbines, address the energy gap. However, no energy management system is currently available to regulate the uncertainty of renewable energy sources, electric vehicles, and appliance consumption within a smart microgrid. Therefore, this study investigated the impact of solar photovoltaic (PV) panels, electric vehicles, and Micro-Grid (MG) storage on maximum solar radiation hours. Several Deep Learning (DL) algorithms were applied to account for the uncertainty. Moreover, a Reinforcement Learning HCPV (RL-HCPV) algorithm was created for efficient real-time energy scheduling decisions. The proposed algorithm managed the energy demand between PV solar energy generation and vehicle energy storage. RL-HCPV was modeled according to several constraints to meet household electricity demands in sunny and cloudy weather. Simulations demonstrated how the proposed RL-HCPV system could efficiently handle the demand response and how V2H can help to smooth the appliance load profile and reduce power consumption costs with sustainable power generation. The results demonstrated the advantages of utilizing RL and V2H as potential storage technology for smart buildings.

Classification of Raccoon dog and Raccoon with Transfer Learning and Data Augmentation (전이 학습과 데이터 증강을 이용한 너구리와 라쿤 분류)

  • Dong-Min Park;Yeong-Seok Jo;Seokwon Yeom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.34-41
    • /
    • 2023
  • In recent years, as the range of human activities has increased, the introduction of alien species has become frequent. Among them, raccoons have been designated as harmful animals since 2020. Raccoons are similar in size and shape to raccoon dogs, so they generally need to be distinguished in capturing them. To solve this problem, we use VGG19, ResNet152V2, InceptionV3, InceptionResNet and NASNet, which are CNN deep learning models specialized for image classification. The parameters to be used for learning are pre-trained with a large amount of data, ImageNet. In order to classify the raccoon and raccoon dog datasets as outward features of animals, the image was converted to grayscale and brightness was normalized. Augmentation methods were applied using left and right inversion, rotation, scaling, and shift to create sufficient data for transfer learning. The FCL consists of 1 layer for the non-augmented dataset while 4 layers for the augmented dataset. Comparing the accuracy of various augmented datasets, the performance increased as more augmentation methods were applied.

V-Killer: An English Vocabulary Game using Searching and Ranking based on Mobile (V-Killer: 검색과 랭킹을 이용한 모바일 기반의 영어 단어 맞추기 게임)

  • Jung, Eun-Ji;Lee, Hyun-Joo;Kwon, Jin-Hee;Song, Hye-Ju;Park, Young-Ho;Lee, Jong-Woo;Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.10 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • Recently, an interest in mobile games is increasing according to the extension of the high speed network infra and the development of mobile devices. Specially, the mobile game for learning can help to reinforce an academic performance and an interest for a brief time anytime anywhere. Thus, we propose new mobile contents named V-Killer which combines learning with a game. V-Killer is a word puzzle game which has functions of ranking and searching. The game can get feedback on your learning or progress and choose the degree of difficulty according to the ability of the user. The game lead to an interaction of user and games as sets questions by user, in addition, it is easy to operate and has a simple construction. In the paper, we implement the proposed game on the mobile and present the game.

  • PDF

Evolution of a New Learning Ecology: From E to M-Learning

  • Atienza, Theresita V.
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1698-1703
    • /
    • 2007
  • The paper focuses on a new 'learning ecology' that is evolving and the challenges that educators must confront. It looks at e-learning as not just another add-on, but a technology that is transforming our educational institutions. How teaching and learning is conceptualized and experienced to generate a determined community of inquiry that integrates social, cognitive, and teaching presence in a manner that will take full advantage of the distinctive assets of e-learning is discussed. Likewise, the possibility of mobile learning is put forward.

  • PDF

A Study of Establishment and application Algorithm of Artificial Intelligence Training Data on Land use/cover Using Aerial Photograph and Satellite Images (항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터 구축 및 알고리즘 적용 연구)

  • Lee, Seong-hyeok;Lee, Moung-jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.871-884
    • /
    • 2021
  • The purpose of this study was to determine ways to increase efficiency in constructing and verifying artificial intelligence learning data on land cover using aerial and satellite images, and in applying the data to AI learning algorithms. To this end, multi-resolution datasets of 0.51 m and 10 m each for 8 categories of land cover were constructed using high-resolution aerial images and satellite images obtained from Sentinel-2 satellites. Furthermore, fine data (a total of 17,000 pieces) and coarse data (a total of 33,000 pieces) were simultaneously constructed to achieve the following two goals: precise detection of land cover changes and the establishment of large-scale learning datasets. To secure the accuracy of the learning data, the verification was performed in three steps, which included data refining, annotation, and sampling. The learning data that wasfinally verified was applied to the semantic segmentation algorithms U-Net and DeeplabV3+, and the results were analyzed. Based on the analysis, the average accuracy for land cover based on aerial imagery was 77.8% for U-Net and 76.3% for Deeplab V3+, while for land cover based on satellite imagery it was 91.4% for U-Net and 85.8% for Deeplab V3+. The artificial intelligence learning datasets on land cover constructed using high-resolution aerial and satellite images in this study can be used as reference data to help classify land cover and identify relevant changes. Therefore, it is expected that this study's findings can be used in the future in various fields of artificial intelligence studying land cover in constructing an artificial intelligence learning dataset on land cover of the whole of Korea.

Research of Deep Learning-Based Multi Object Classification and Tracking for Intelligent Manager System (지능형 관제시스템을 위한 딥러닝 기반의 다중 객체 분류 및 추적에 관한 연구)

  • June-hwan Lee
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.73-80
    • /
    • 2023
  • Recently, intelligent control systems are developing rapidly in various application fields, and methods for utilizing technologies such as deep learning, IoT, and cloud computing for intelligent control systems are being studied. An important technology in an intelligent control system is recognizing and tracking objects in images. However, existing multi-object tracking technology has problems in accuracy and speed. In this paper, a real-time intelligent control system was implemented using YOLO v5 and YOLO v6 based on a one-shot architecture that increases the accuracy of object tracking and enables fast and accurate tracking even when objects overlap each other or when there are many objects belonging to the same class. The experiment was evaluated by comparing YOLO v5 and YOLO v6. As a result of the experiment, the YOLO v6 model shows performance suitable for the intelligent control system.