• Title/Summary/Keyword: V-Bending

Search Result 336, Processing Time 0.026 seconds

A Design of Press Die Components by Use of 3D CAD Library (3차원 CAD라이브러리를 이용한 프레스 금형 부품의 설계)

  • Park C. H.;Lee S. S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.373-381
    • /
    • 2004
  • Using standard components of a press die is recognized as a way for a cost reduction and a short lead time. It also provides a way for a quick maintenance of a die under repair. It is expected to contribute to integration of CAD/CAM system for manufacturing dies in the future. This paper presents a 3D CAD library which is constructed using the standard components and is used for designing a press die. This 3D CAD library is generated by a database system made of Microsoft Access for standard components and by CATIA V5 R10 API for geometric features. The library is implemented using Visual Basic 6.0 utility of CATIA API function in the Windows NT environment. It creates a 3D model of the standard components of press die easily when a die designer inputs numerical values of geometric features and the BOM of the completely assembled parts. It also generates automatically the assembly drawing of die set by using variables for standard values of die parts. Therefore users can save the cost of time to design the press die components, and even a beginner can use this program with ease. The test results of the 3D CAD library for designing shearing and bending dies verify its usefulness and feasibility.

A Study on the Fracture Toughness Characteristics of FCAW Weldment of Steel for Offshore Structures (해양 구조물용 강재 FCAW 용접부의 파괴인성 특성에 관한 연구)

  • Kang Sung-Won;Kim Myung-Hyun;Kim Yong-Bin;Shin Yong-Taek;Lee Hae-Woo
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.57-63
    • /
    • 2004
  • Fracture toughness is an important parameter in designing offshore structures to ensure resistance to fracture at various temperatures. In this study, a series of experiments is carried out to obtain fracture toughness values (CTOD) of API 2W Gr.50B, welded using FCAW(Flux Cored Arc Weld). In particular, a comparison of absorbed impact energy and CTOD values are made with respect to two different welding groove shapes; double-V-groove and double-bevel-groove. Charpy impact tests are performed for specimens sampled near the root gap, and CTOD tests are carried out for three point bending specimens having the notch at weld zone. While Charpy impact test result is determined to be a good qualitative measure of fracture toughness, no quantitative correspondence between impact absorbed energy and CTOD values was found. Based on the experiment, it is observed that double-V-groove welds give lower transition temperature than those of double-bevel-groove.

Nitrogen removal characteristics of pigment wastewater using PAC-A/O process (PAC-A/O 공정을 이용한 안료폐수의 질소 제거 특성)

  • Jeong, Jongsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.19-25
    • /
    • 2018
  • The objectives of this study were to evaluate the removal characteristics of total nitrogen, the influence factor of denitrification and the optimum operating condition in the pigment wastewater treatment using PAC-A/O process. The operating conditions of PAC-A/O process were mean BOD volumetric loading $0.86kgBOD/m^3/day$, mean F/M ratio 0.072~0.13 kgBOD/kgMLVSS/day and mean C/N ratio 3.47, respectively. The conditions of anoxic process in the field plant test were mean pH 8.3~8.7 and mean temperature $34.1{\sim}44.0^{\circ}C$. The ORP bending point knee was eventually appeared in the ORP -107 mV and $NO_3{^-}-N$ removal efficiency was increased according to the ORP decrease. In the ORP -107 mV below condition, the removal efficiency of T-N and $NO_3{^-}-N$ was 92.3~95.0% and 98.5~99.7%. Denitrification rate was calculated to be 1.581~1.791 mg $NO_3{^-}-N/gMLSS/hr$. The experimental results showed that the ORP control in the PAC-A/O process could be an effective method for treatment of pigment wastewater.

Seismic design rules for ductile Eurocode-compliant two-storey X concentrically braced frames

  • Costanzo, Silvia;D'Aniello, Mario;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.273-291
    • /
    • 2020
  • Two-storey X-bracings are currently very popular in European practice, as respect to chevron and simple X bracings, owing to the advantages of reducing the bending demand in the brace-intercepted beams in V and inverted-V configurations and optimizing the design of gusset plate connections. However, rules for two-storey X braced frames are not clearly specified within current version of EN1998-1, thus leading to different interpretations of the code by designers. The research presented in this paper is addressed at investigating the seismic behaviour of two-storey X concentrically braced frames in order to revise the design rules within EN1998-1. Therefore, five different design criteria are discussed, and their effectiveness is investigated. With this aim, a comprehensive numerical parametric study is carried out considering a set of planar frames extracted from a set of structural archetypes that are representative of regular low, medium and high-rise buildings. The obtained results show that the proposed design criteria ensure satisfactory seismic performance.

GAS-DYNAMICAL FRICTION OF A PERTURBER MOVING ON A CIRCULAR ORBIT

  • Kim, Hyo-Sun;Kim, Woong-Tae
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.179-182
    • /
    • 2007
  • Dynamical friction plays an important role in reducing angular momenta of objects in orbital motions. While astronomical objects usually follow curvilinear orbits, most previous studies focused on the linear-trajectory cases. Here, we present the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semi-analytic method. The circular orbit causes the density wakes to bend along the orbit into asymmetric configurations, resulting in the drag forces in both opposite (azimuthal) and lateral (radial) directions to the perturber motion, although the latter does not contribute to the orbital decay much. For a subsonic perturber, the bending of a wake is only modest and the resulting drag force in the opposite direction is remarkably similar to the linear-trajectory counterpart. On the other hand, a supersonic perturber is able to overtake its own wake, possibly multiple times, creating a high-density trailing tail. Despite the dramatic changes in the wake morphologies, the azimuthal drag force is in surprisingly good agreement with the formulae of Ostriker for the linear-trajectory cases, provided $V_pt=2R_p,\;where\;V_p\;and\;R_p$ are the velocity and orbital radius of the perturber, respectively.

Development of Simple Prediction Model for V-groove butt welding deformation (V-개선 맞대기 용접변형에 대한 간이 예측 모델 개발)

  • 김상일
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.106-113
    • /
    • 2004
  • The block assembly of ship consists of a certain type of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. The residual deformation due to welding is inevitable at each assembly stage. The geometric inaccuracy caused by the welding deformation tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding deformation. Systematic and quantitative theoretical works to clarify the effects of various factors on the welding deformation have rarely been found. Therefore, in this paper, the effects of various factors, such as welding process and gravity on the butt welding deformation have been investigated through a number of numerical analyses. In addition, this paper proposes a simplified analysis method to predict the butt welding deformation in actual plate structure. For this purpose, a simple prediction model for butt welding deformations has been derived based on numerical and experimental results through the regression analysis. Based on these results, the simplified analysis method has been applied to some examples to show its validity.

Improvement of Beam-Quality Evaluation Method for Medical Linear Accelerator Using Magnetic Field

  • Kim, Jeongho;Han, Manseok;Yoo, Sejong;Kim, Kijin;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.120-128
    • /
    • 2015
  • Beam-quality of medical linac evaluations vary by diverse factors. Because conventional beam-quality evaluation methods yield fragmentary results, a new beam-evaluation method is suggested, and its feasibility is evaluated. The PDDs (percentage depth doses) of 6 MV (Mega-voltage) and 10 MV photon, R (Range) of a 6 MeV (Mega Electron-voltage) and 9 MeV electron were measured and compared with the conventional evaluation methods, and the improved methods $PDD^{10}{_5}$, $PDD^{20}{_{10}}$, $PDD^{30}{_{20}}$, $PDD^{20}{_5}$, $PDD^{30}{_{10}}$, and $R^{70}{_{50}}$, $R^{50}{_{30}}$, $R^{70}{_{30}}$ as the magnetic field of the bending magnet was changed to +2% to -2%, and the results were compared. The comparison showed that the improved methods exhibit a higher discrimination than the conventional methods in each energy regime. $PDD^{10}{_5}$, $PDD^{30}{_{20}}$, $PDD^{30}{_{10}}$ and $R^{70}{_{50}}$, $R^{50}{_{30}}$ should be applied. These methods exhibit a higher discrimination in each energy regime than conventional beam-quality evaluation methods; therefore, they should be used for beam-quality evaluation according to the magnetic field variation.

Finite element analysis of reinforced concrete spandrel beams under combined loading

  • Ibraheem, O.F.;Bakar, B.H. Abu;Johari, I.
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.291-308
    • /
    • 2014
  • A nonlinear, three-dimensional finite element analysis was conducted on six intermediate L-shaped spandrel beams using the "ANSYS Civil FEM" program. The beams were constructed and tested in the laboratory under eccentric concentrated load at mid-span to obtain a combined loading case: torsion, bending, and shear. The reinforcement case parameters were as follows: without reinforcement, with longitudinal reinforcement only, and reinforced with steel bars and stirrups. All beams were tested under two different combined loading conditions: T/V = 545 mm (high eccentricity) and T/V = 145 mm (low eccentricity). The failure of the plain beams was brittle, and the addition of longitudinal steel bars increased beam strength, particularly under low eccentricity. Transverse reinforcement significantly affected the strength at high eccentricities, that is, at high torque. A program can predict accurately the behavior of these beams under different reinforcement cases, as well as under different ratios of combined loadings. The ANSYS model accurately predicted the loads and deflections for various types of reinforcements in spandrel beams, and captured the critical crack regions of these beams.

Driving Characteristic of Ultrasonic Linear Motor with V-type (V-형 선형 초음파 모터의 구동 특성)

  • Jeong, Seong-Su;Seo, San-Dong;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.274-275
    • /
    • 2006
  • A linear ultrasonic motor was designed by a combination of the longitudinal and bending mode. Linear ultrasonic motors are based on an elliptical motion on the surface of elastic body, such as bar or plates. The corresponding eigen-mode of one resonance frequency can be excited twice at the same time with a phase shift of 90 degrees in space and time. That is excite symmetric and anti-symmetric modes. Then it determines the thrust and speed of the motor. Linear ultrasonic motors are investigated experimentally in according to be fabricated a general classification to motor structure and material characteristic. There was the first to simulate as use of finite element analysis ANSYS 9.0. The AL-T2W8-ARM14-LEG18-ANGLE80 motor has a maxim efficiency 17 [%] under the speed 0.14 [m/s], thrust 345 [gf] and preload 280 [gf], operating frequency is 57.6 [kHz].

  • PDF

A Study on the Optimum Structural Design of High Speed Ships with Twin Hulls (쌍동형 초고속선의 최적 구조 설계에 관한 연구)

  • C.D. Jang;S.I. Seo;S.K. Kim;J.O. Kwon;S.D. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.109-118
    • /
    • 1994
  • In this study, an optimization method to design the hull structure of the surface effect ships with twin hulls is proposed for the purpose of minimization of weight based on the regulations of DnV class, and computer programs following the method are developed. The method uses simple formulas as to bending and buckling strength of beams and plates to design local structures, and considers the effect of interaction between longitudinal girders and transverse web frames by grillage analysis and calculates torsional strength of the cross structure by the simplified method. Global optimization of the midship section is attained by integration of optimized substructures. According to optimized results by applying the method to the designed ship, reduction of 20 percent of hull weight can be shown, and optimum transverse frame space can be obtained.

  • PDF