• Title/Summary/Keyword: Uv Camera

Search Result 64, Processing Time 0.023 seconds

Evaluation of Concentration and Reaction Kinetics through Color Analyses (색상 분석법을 이용한 농도 및 촉매반응속도 측정)

  • Lee, Euna;Chang, Ji Woong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.279-283
    • /
    • 2022
  • UV-vis spectroscopy is one of the powerful tools for measuring the concentrations of reactant and products during a chemical reaction. However, there is an limitation of using the technique when the reaction undergoes in high concentration and high temperature. Color analysis using camera images can provide the identical results with UV-vis analysis with regardless of the sample concentration and temperature. The catalytic reduction reaction of resazurin to resorufin was investigated using the color analysis with the color spaces such as CIE L*a*b*. Moreover, the color analysis enabled the independent analysis of two different material's concentrations without the deconvolution of overlapped wavelengths unlike the case of using UV-vis spectroscopy.

Multi-spectral Flash Imaging using Region-based Weight Map (영역기반 가중치 맵을 이용한 멀티스팩트럼 플래시 영상 획득)

  • Choi, Bong-Seok;Kim, Dae-Chul;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.127-135
    • /
    • 2013
  • In order to acquire images in low-light environments, it is usually necessary to adopt long exposure times or resort to flash lights. However, flashes often induce color distortion, cause the red-eye effect and can be disturbing to subjects. On the other hand, long-exposure shots are susceptible to subject-motion, as well as motion-blur due to camera shake when performed hand-held. A recently introduced technique to overcome the limitations of traditional low-light photography is that of multi-spectral flash. Multi-spectral flash images are a combination of UV/IR and visible spectrum information. The general idea is that of retrieving details from the UV/IR spectrum and color from the visible spectrum. However, multi-spectral flash images themselves are subject to color distortion and noise. This works presents a method to compute multi-spectral flash images so that noise can be reduced and color accuracy improved. The proposed approach is a previously seen optimization method, improved by the introduction of a weight map used to discriminate uniform regions from detail regions. The weight map is generated by applying canny edge operator and it is applied to the optimization process for discriminating the weights in uniform region and edge. Accordingly, the weight of color information is increased in the uniform region and the detail region of weight is decreased in detail region. Therefore, the proposed method can be enhancing color reproduction and removing artifacts. The performance of the proposed method has been objectively evaluated using long-exposure shots as reference.

Spraying Status Evaluation of the Electro-static Sprayer Using Computer Image Processing (컴퓨터 영상처리를 이용한 정전분무기의 분무상태 평가)

  • Hwang, H.;Cho, S. I.;Cho, D. Y.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.391-398
    • /
    • 1999
  • The spraying status of the electrostatic sprayer was evaluated by processing surface spraying images of the natural leaves. Water solution of the fluorescent material was used as a spray medium. The image of the lights reflected by fluorescent droplets was captured under UV light using a color CCD camera. Coverage rate, particle density, and the size distribution of particles were analyzed from the surface images of leaves under various spraying conditions such as spraying nozzle angle and object distance. Spraying characteristics of the electrostatic sprayer was evaluated in comparison with the conventional one. In a case of electrostatic sprayer, coverage rate and particle density increased by the average of 1.57times and 1.01times respectively under various nozzle angles and distances. The number of particle under the diameter of 50 ${\mu}{\textrm}{m}$ also increased significantly.

  • PDF

Surface Discharge and Materials Analysis of Polymer Insulators Due to Accelerated Deterioration (가속열화에 의한 폴리머애자의 연면방전과 재료분석)

  • Shong, Kil-Mok;Kim, Jong-Min;Jung, Jin-Su;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1372-1373
    • /
    • 2008
  • This study investigated the detection of corona discharge on polymer insulators at 13.2kV. Also, It will be analyzed by variety analyzers such as FT-IR, TA, and so on. It carried out an experiment and an actual measurement about corona detection using a UV-camera. This experiment and inspection would need to respect the above criteria. It was required to verify various experimental conditions and on-site inspection afterwards, but it was believed to minimize the measurement error by data-basing research results in a continuous manner and it was necessary to establish diagnosis technologies and standards in various electrical power facilities.

  • PDF

Curing Properties of UV-curable Resin-Polymer Composite Materials (UV경화성 수지-고분자 복합재료의 경화 특성)

  • ;;Yasufumi Otsubo
    • Proceedings of the Korean Printing Society Conference
    • /
    • 1998.10a
    • /
    • pp.16-21
    • /
    • 1998
  • Spectral reflrectance of the object should be mesured to predict the color of object under various illuminants. The spectral reflectance can be represented in a multidemensional space; Generally we can obtain only three-channel data from input device such as CCD camera, color scanner etc. The estimation from three dimernsional to multidimension can be achieved using principal components of spectral reflectance. In this paper, A method to predict the spectral reflectance of skin color taken by 3-channel input device is discribed. To confirm this method, we simulate color represent under various illuminants about yellow, white and colored women face.

  • PDF

A Study on the Improvement of Calsium Test (Calsium Test의 정밀도 향상을 위한 연구)

  • Han, Jin-Woo;Hwang, Jung-Yeon;Seo, Dae-Shik;Kim, Young-Hun;Moon, Dae-Kyu;Han, Jung-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.169-172
    • /
    • 2005
  • 공정시 플라스틱 기판의 변형을 방지하기 위해 PC(Polycarbonate) 기판을 약 12시간 동안 pre-annealing시킨 다음 SiN(silicon nitride)와 PI(Poly-imide)를 각각 Sputter와 Spin-Coater를 이용하여 Coating하였다. 완성된 PC 기판위에 Themal Evaporation으로 Calsium을 증착한 뒤 Al을 올렸다. Calsium 증착 된면에 삼성 코닝의 글래스를 UV resin으로 부착 시킨 다음 상온에서 투습률을 측정하였다. 측정 간격은 12시간으로 하였으며 Calsium Test 의 정확도 향상을 위해 CCD Camera로 측정하여 컴퓨터로 분석하였다. 그래픽 저장 파일은 저장시 이미지 손실을 방지하기 위해 Bitmap방식을 그대로 사용 하였으며 정확도 향상을 위한 분석 프로그램은 MicroSoft 사의 Visual C++로 작성하였다. 화상 처리 면적은 컴퓨터 시스템의 처리 속도를 감안하여 70*70 으로 하였다.

  • PDF

2019 Total Solar Eclipse Expedition of KASI

  • Bong, Su-Chan;Yang, Heesu;Lee, Jae-Ok;Kim, Jinhyun;Jeon, Young-Beom;Jang, Bi-Ho;Seough, Jungjoon;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.69.2-69.2
    • /
    • 2020
  • Korea Astronomy and Space Science Institute (KASI) is developing a coronagraph to measure the coronal electron density, temperature, and speed utilizing spectral change of the K-corona around 400 nm. However, near UV light is more affected by atmospheric effect on the ground than visible light. For the total solar eclipse on July 2 2019, KASI organized an expedition team to test the possibility of the similar measurement scheme in the visible light. The observation site was in Las Flores, San Juan, Argentina. We built an imaging spectrograph using micro lenslet array and grism, named Coronal Integral Field Spectrograph (CorIFS). In addition, images of white light corona, wide field background, and all sky were taken with various camera settings. We present the preliminary results of the expedition.

  • PDF

The effects of clouds on enhancing surface solar irradiance (구름에 의한 지표 일사량의 증가)

  • Jung, Yeonjin;Cho, Hi Ku;Kim, Jhoon;Kim, Young Joon;Kim, Yun Mi
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.131-142
    • /
    • 2011
  • Spectral solar irradiances were observed using a visible and UV Multi-Filter Rotating Shadowband Radiometer on the rooftop of the Science Building at Yonsei University, Seoul ($37.57^{\circ}N$, $126.98^{\circ}E$, 86 m) during one year period in 2006. 1-min measurements of global(total) and diffuse solar irradiances over the solar zenith angle (SZA) ranges from $20^{\circ}$ to $70^{\circ}$ were used to examine the effects of clouds and total optical depth (TOD) on enhancing four solar irradiance components (broadband 395-955 nm, UV channel 304.5 nm, visible channel 495.2 nm, and infrared channel 869.2 nm) together with the sky camera images for the assessment of cloud conditions at the time of each measurement. The obtained clear-sky irradiance measurements were used for empirical model of clear-sky irradiance with the cosine of the solar zenith angle (SZA) as an independent variable. These developed models produce continuous estimates of global and diffuse solar irradiances for clear sky. Then, the clear-sky irradiances are used to estimate the effects of clouds and TOD on the enhancement of surface solar irradiance as a difference between the measured and the estimated clear-sky values. It was found that the enhancements occur at TODs less than 1.0 (i.e. transmissivity greater than 37%) when solar disk was not obscured or obscured by optically thin clouds. Although the TOD is less than 1.0, the probability of the occurrence for the enhancements shows 50~65% depending on four different solar radiation components with the low UV irradiance. The cumulus types such as stratoculmus and altoculumus were found to produce localized enhancement of broadband global solar irradiance of up to 36.0% at TOD of 0.43 under overcast skies (cloud cover 90%) when direct solar beam was unobstructed through the broken clouds. However, those same type clouds were found to attenuate up to 80% of the incoming global solar irradiance at TOD of about 7.0. The maximum global UV enhancement was only 3.8% which is much lower than those of other three solar components because of the light scattering efficiency of cloud drops. It was shown that the most of the enhancements occurred under cloud cover from 40 to 90%. The broadband global enhancement greater than 20% occurred for SZAs ranging from 28 to $62^{\circ}$. The broadband diffuse irradiance has been increased up to 467.8% (TOD 0.34) by clouds. In the case of channel 869.0 nm, the maximum diffuse enhancement was 609.5%. Thus, it is required to measure irradiance for various cloud conditions in order to obtain climatological values, to trace the differences among cloud types, and to eventually estimate the influence on solar irradiance by cloud characteristics.

Imaging Performance Analysis of an EO/IR Dual Band Airborne Camera

  • Lee, Jun-Ho;Jung, Yong-Suk;Ryoo, Seung-Yeol;Kim, Young-Ju;Park, Byong-Ug;Kim, Hyun-Jung;Youn, Sung-Kie;Park, Kwang-Woo;Lee, Haeng-Bok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.174-181
    • /
    • 2011
  • An airborne sensor is developed for remote sensing on an aerial vehicle (UV). The sensor is an optical payload for an eletro-optical/infrared (EO/IR) dual band camera that combines visible and IR imaging capabilities in a compact and lightweight package. It adopts a Ritchey-Chr$\'{e}$tien telescope for the common front end optics with several relay optics that divide and deliver EO and IR bands to a charge-coupled-device (CCD) and an IR detector, respectively. The EO/IR camera for dual bands is mounted on a two-axis gimbal that provides stabilized imaging and precision pointing in both the along and cross-track directions. We first investigate the mechanical deformations, displacements and stress of the EO/IR camera through finite element analysis (FEA) for five cases: three gravitational effects and two thermal conditions. For investigating gravitational effects, one gravitational acceleration (1 g) is given along each of the +x, +y and +z directions. The two thermal conditions are the overall temperature change to $30^{\circ}C$ from $20^{\circ}C$ and the temperature gradient across the primary mirror pupil from $-5^{\circ}C$ to $+5^{\circ}C$. Optical performance, represented by the modulation transfer function (MTF), is then predicted by integrating the FEA results into optics design/analysis software. This analysis shows the IR channel can sustain imaging performance as good as designed, i.e., MTF 38% at 13 line-pairs-per-mm (lpm), with refocus capability. Similarly, the EO channel can keep the designed performance (MTF 73% at 27.3 lpm) except in the case of the overall temperature change, in which the EO channel experiences slight performance degradation (MTF 16% drop) for $20^{\circ}C$ overall temperate change.

An Automatic Corona-discharge Detection System for Railways Based on Solar-blind Ultraviolet Detection

  • Li, Jiaqi;Zhou, Yue;Yi, Xiangyu;Zhang, Mingchao;Chen, Xue;Cui, Muhan;Yan, Feng
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.196-202
    • /
    • 2017
  • Corona discharge is always a sign of failure processes of high-voltage electrical apparatus, including those utilized in electric railway systems. Solar-blind ultraviolet (UV) cameras are effective tools for corona inspection. In this work, we present an automatic railway corona-discharge detection system based on solar-blind ultraviolet detection. The UV camera, mounted on top of a train, inspects the electrical apparatus, including transmission lines and insulators, along the railway during fast cruising of the train. An algorithm based on the Hough transform is proposed for distinguishing the emitting objects (corona discharge) from the noise. The detection system can report the suspected corona discharge in real time during fast cruises. An experiment was carried out during a routine inspection of railway apparatus in Xinjiang Province, China. Several corona-discharge points were found along the railway. The false-alarm rate was controlled to less than one time per hour during this inspection.