• Title/Summary/Keyword: Using Smart Factory

Search Result 230, Processing Time 0.023 seconds

Effects of Smart Factory Quality Characteristics & Innovative Activities on Business Performance : Mediating Effect of Using Smart Factory

  • CHO, Ik-Jun;KIM, Jin-Kwon;AHN, Tony-DongHui;YANG, Hoe-Chang
    • The Journal of Economics, Marketing and Management
    • /
    • v.8 no.3
    • /
    • pp.23-36
    • /
    • 2020
  • Purpose: The purpose of this study is to identify the strategic direction of organizations and their employees to efficiently utilize smart factories and enhance business performance among Korean manufacturing companies. Research design, data, and methodology: We derived a structured research model to check the mediated effect of utilization of smart factory between the characteristics of smart factory and the innovation activities. Results: Quality characteristics of smart factory and Innovation activities were all found to have a statistically significant effect on utilization of smart factory, utilization of smart factory was found to have a statistically significant effect on the business performance. And it has been shown that the utilization of smart factory is partially mediated relative to the quality characteristics of smart factory and business performance and relative to innovation activities and business performance. Conclusions: Smart factory builders can reflect the areas that affect utilization of the smart factory in their strategies by considering the quality characteristics of the smart factory and innovation Activities. Therefore, smart factory builders can identify the quality characteristics of smart factory and reflect them in the process and analyze active utilize measures through the innovative activities of the employees of the organization, thereby influencing business performance.

Analysis of Factors Affecting Company Performance by Smart Factory (스마트공장 보급이 중소기업 경영에 미치는 영향 요인 분석)

  • Kim, Jinhan;Cho, Jinhyung;Lee, Saejae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.76-83
    • /
    • 2019
  • The South Korean government is actively assisting the supply of the smart factory solutions to SMEs (Small & Medium-sized Enterprises) according to its manufacturing innovation 3.0 policy for the smart manufacturing as the 4th industrial revolution era unfolds. This study analyzed the impacts of the smart factory solutions, which have been supplied by the government, on the companies performances. The effects of the level of smart factory and the operation capabilities for the smart factory solutions on company performances, and the mediating effects of manufacturing capabilities have been analyzed using SPSS and AMOS. The data for this survey-based study were collected from the SMEs which implemented the smart factory solutions since 2015. The results show that the level of smart factory solutions adopted and operation capabilities for the smart factories do not have direct effects on the company performances, but their mediating effects on the manufacturing capabilities matter and the manufacturing capabilities effect directly on the company performances. In addition significant factors boosting the operation capability for the smart factory and the levels of the smart factory solutions are identified. Finally, the policy direction for enhancing the smart factory effects is presented, and the future research directions along with the limitations are suggested.

The Effect of UTAUT, Dynamic Capabilities, Utilization of Smart Factory on the Intention to Continue Using: Technology Perception Moderating Effect

  • Jin-Kwon KIM;Kyung-Soo LEE
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.6
    • /
    • pp.43-55
    • /
    • 2023
  • Purpose: The purpose of this study was to identify the relationship between smart factory utilization and continued use intention between UTAUT, dynamic capabilities of smart factory construction companies and present the company's strategic direction. Research design, data, and methodology: In this study, a structured research model was derived to confirm the relationship between UTAUT, dynamic capabilities, smart factory utilization and continued use intention and the difference according to Technology perception. For analysis a total of 223 valid questionnaires from e-commerce users were used. Confirmatory factor analysis, correlation analysis, and structural equations were conducted to verify. Results: Both UTAUT, dynamic capabilities had a significant effect on smart factory utilization as well as continued use intention. It was found that the relationship between UTAUT, dynamic capabilities, smart factory utilization, and continued use intention. differed depending on the technology perception. Conclusions: Organizational members utilize the smart factory in anticipation of effects such as work performance and various improvements. Smart factory data will be used continuously when it is useful for business processes and operations. It is necessary to establish strategies and provide training to improve the technical level and capabilities of organizational members. Through this, a strategy is needed that can be continuously used by utilizing the information obtained through smart factory to improve work efficiency, productivity and efficiency increase is needed

Development of Smart Factory Diagnostic Model Reflecting Manufacturing Characteristics and Customized Application of Small and Medium Enterprises (제조업 특성을 반영한 스마트공장 진단모델 개발 및 중소기업 맞춤형 적용사례)

  • Kim, Hyun-Deuk;Kim, Dong-Min;Lee, Kyung-Geun;Yoon, Je-Whan;Youm, Sekyoung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.25-38
    • /
    • 2019
  • This study is to develop a diagnostic model for the effective introduction of smart factories in the manufacturing industry, to diagnose SMEs that have difficulties in building their own smart factory compared to large enterprise, to identify the current level and to present directions for implementation. IT, AT, and OT experts diagnosed 18 SMEs using the "Smart Factory Capacity Diagnosis Tool" developed for smart factory level assessment of companies. They analyzed the results and assessed the level by smart factory diagnosis categories. Companies' smart factory diagnostic mean score is 322 out of 1000 points, between 1 level (check) and 2 level (monitoring). According to diagnosis category, Factory Field Basic, R&D, Production/Logistics/Quality Control, Supply Chain Management and Reference Information Standardization are high but Strategy, Facility Automation, Equipment Control, Data/Information System and Effect Analysis are low. There was little difference in smart factory level depending on whether IT system was built or not. Also, Companies with large sales amount were not necessarily advantageous to smart factories. This study will help SMEs who are interested in smart factory. In order to build smart factory, it is necessary to analyze the market trends, SW/ICT and establish a smart factory strategy suitable for the company considering the characteristics of industry and business environment.

Development of Smart Factory-Based Technology Education Platform Linking CPPS and VR (CPPS 및 VR을 연계한 스마트팩토리 기반 기술 교육 플랫폼 개발)

  • Lee, Hyun
    • Journal of Practical Engineering Education
    • /
    • v.13 no.3
    • /
    • pp.483-490
    • /
    • 2021
  • In this paper, we proposed the development of a smart factory intergrated technology education platform using smart factory based CPPS (Cyber Physical Production System) and VR (Vitrual Reality) technology and educational methods using the platform. A platform has been developed to learn how to integrate 3D digital twin and BOP (Bill of Process)-based manufacturing processes. In addition, Digital Twin established a smart factory-based integrated education platform by linking mechanical systems, digital twins, and virtual reality through the OPC-UA server. Based on this platform, the smart factory integration platform is proposed to have individual elements of the smart factory integration platform through BOP-based digital twin simulation, OPC-UA integration, MES system, SCADA system, and VR interworking.

The Built of Smart Factory Using Sensors and Virtual Process Design (센서와 가상 공정설계를 활용한 스마트 팩토리 구축)

  • So, Byeong-Eob;Shin, Sung-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1071-1080
    • /
    • 2017
  • Recently, the terms of the 4th Industrial Revolution and the Smart Factory are often heard through news and media. But most of the companies that are parties are not interested. Because there is no specific guidance on how to build Smart Factory and information about Smart Factory. The built of the Smart Factory should be carried out in accordance with the size of the company considering the purpose of the introduction. In the existing study, they analyzed successful cases of building Smart Factory in Korea As a result, in the case of large-size firms, it is an effective strategy that expanding from a model factory to whole factory for successful Smart Factory building. In addition, in the case of medium and small-size firms, it is an effective strategy that upgrading from low-level step to high-level step for successful Smart Factory building. In this study, selecting medium and small-size firms, and bottleneck section and processes requiring improvement are identified through 3D virtual process design, and then install sensors. Finally, after analyzing the data collected through the sensor, we will improve the process and build Smart Factory with improved productivity.

Support Project for the Establishment of a Smart Factory for the Win-win between Large and Small Businesses Performance Analysis of the Adopting Company (대·중소 상생형 스마트공장 구축 지원 사업 도입기업에 대한 성과분석)

  • Seo, Hongeil;Kim, Taesung
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.135-142
    • /
    • 2022
  • The smart factory is an important system that can reduce defects, maximize productivity, and respond to customer needs, from the labor-intensive era of traditional small and medium-sized manufacturing companies through the automation era to CPS using ICT. However, small and medium-sized manufacturers often fall short of the basic stage due to economic and environmental constraints, and there are many companies that do not even recognize the concept of a smart factory. In this situation, to expand the smart factory of small and medium-sized enterprises, the project to support the establishment of a smart factory for the win-win between large and small enterprises. The win-win smart factory construction support project provides a customized differentiation program support project according to the size and level of the company for all domestic manufacturing SMEs regardless of whether or not they are dealing with Samsung. In this study, we analyze the construction status and introduction performance of companies participating in the win-win smart factory support project to find out whether they have been helpful in management and to find efficient ways to improve support policies, and to suggest the direction of continuous support projects to improve the manufacturing competitiveness of SMEs in the future.

Standardization Strategy of Smart Factory for Improving SME's Global Competitiveness (중소기업의 글로벌 경쟁력 제고를 위한 스마트공장 표준화 전략)

  • Chung, Sunyang;Jeon, Joong Yang;Hwang, Jeong-Jae
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.3
    • /
    • pp.545-571
    • /
    • 2016
  • The development of ICT brings a big change in manufacturing industries, and new information technology such as IoT, AR, and big data was applied on manufacturing process. As a result, the concept of smart factory has been introduced as a new manufacturing paradigm. In fact advanced countries like USA, Germany, and Japan have actively introduced smart factory in their manufacturing industries such as electronic, automobile, machinery, to improve production efficiency and quality. The manufacturing environment has been changed into flexible system, so that smart factory will be leading future manufacturing industries. Thes changes have more severe influence on Korean manufacturing industries. Mny industrial companies, have a strong interest in smart factory and they, particularly big enterprises, have been adopting smart factory to increase their manufacturing efficiencies. However, Korean small and medium-sized enterprises (SMEs) have many financial and technological difficulties so that the diffusion of smart factory in Korean SMEs has not been satisfiable up to present. However, smart factory is very important for enhancing their competitiveness in global market. Therefore, this study aims at identifying the standardization strategy of smart factory in so-called Korean 'roots industry' by presuming that the standardization will activate the diffusion of smart factory among Korean SMEs. For this purpose, first, this study examines the competitiveness of SMEs, especially in 'roots industry' and identifies the necessity of diffusion of smart factory among those SMEs. Second, based on the active review on the existing literature, this study identifies four factor groups that would influence the adoption or diffusion of standardized smart factory. They are technological, organizational, industrial and policy factors. Third, using those four factors, this study made two comprehensive case analyses on the adoption and diffusion of smart factory. These two companies belong to molding sector which is one of the important six sectors in 'root industry'. Finally, based on the theoretical and empirical analyse, this study suggests four strategies for activating the standardization of smart factory; international standardization, government-leading standardization, firm-leading standardization, and non-standardization.

A Study on Strategic Utilization of Smart Factory: Effects of Building Purposes and Contents on Continuous Utilization (스마트 팩토리의 전략적 활용 연구: 구축 목적 및 내용이 지속적 활용에 미치는 영향)

  • Oh, Ju-Hwan;Kim, Ji-Dae
    • Korean small business review
    • /
    • v.41 no.4
    • /
    • pp.1-36
    • /
    • 2019
  • The purpose of this study is to identify the relationships among purposes and contents of smart factory building and continuous utilization of smart factory. Specifically, this study identifies two types of purposes of smart factory building as follows: (1) improving productivity, (2) increasing flexibility. In this study, three aspects of smart factory building contents were suggested like this: (1) automation area (facility automation vs. work automation), (2) big data system focus (radical transformation vs. incremental improvement), and (3) value chain integration area (internal value chain integration vs. external value chain integration). In addition, we looked at how firm size moderates the purposes - contents - continuous utilization of smart factory relationship. A questionnaire survey was conducted on 151 manufacturing companies. More specifically, out of 151 companies, 100 are small-and-medium-sized enterprises and 51 large-sized enterprises. All questionnaires were targeted at companies with Smart Factory level above level 2. The analysis results of this study using Smart PLS statistical programs are as follows. First, the purposes of smart factory building including increasing productivity and flexibility had positive impacts on all of the contents of smart factory building. Second, all of smart factory building contents had positive impacts on the continuous use of smart factory except big data system for incremental improvement of manufacturing process. Third, the impacts of smart factory building purposes implementation on smart factory building contents varied depending on whether the purpose is productivity improvement or flexibility. Fourth, it was founded that firm size moderated the relationships of purposes - contents - continuous utilization of smart factory in such a way that large-sized firms tend to empathize the link between flexibility and smart factory building contents for continuous use of smart factory, while small-and-medium-sized-firms emphasizing the link between productivity and smart factory building contents. Most of the previous studies have focused on presenting current smart factory deployment cases. However, it is believed that this research has made a theoretical contribution in this field in that it established and verified a research model for the smart factory building strategy. Based on the findings from a working-level perspective, corporate practitioners also need to have a different approach to smart factory building, which should be emphasized depending on whether their purpose of building smart factory is to increase productivity or flexibility. In particular, since the results of this study identify the moderating effect of firm size, it is deemed necessary for firms to implement a smart factory building strategy suitable for their firm size.

Plan for Risk Reduction of Smart Factory Process through Accident Analysis and Status Survey (재해분석과 실태조사를 통한 스마트 팩토리 공정의 위험성 감소 방안)

  • Byeon, Junghwan
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.22-32
    • /
    • 2022
  • The domestic smart factory is being built and spread rapidly, mainly by mid-sized companies and large enterprises according to the government's active introduction and support policy. But these factories only promote production system and efficiency, so harmfulness and risk factors are not considered. Therefore, to derive harmful risk factors in terms of industrial safety for 12,983 government-supported smart factory workplaces from 2014 to 2019, industrial accident status analysis compared workplaces with automation facilities and government-supported workplaces with automation facilities. Also, to reduce risks associated with domestic smart factory processes, twenty government-supported workplaces with automation facilities underwent analysis, evaluating risks through a status survey using the process evaluation table. In addition, the status survey considered region, size, industry, construction level, and accident rate; the difference in risk according to the structure of the process was confirmed. Based on the smart factory process evaluation results, statistical analysis confirmed that serial, parallel, and hybrid structures pose different risk levels and that the risks of mixed structures are greater. Finally, safety control system application was presented for risk assessment and reduction in the smart factory process, reflecting the results of disaster analysis and actual condition investigation.