• Title/Summary/Keyword: Using Radiation

Search Result 8,226, Processing Time 0.029 seconds

Impact by Estimation Error of Hourly Horizontal Global Solar Radiation Models on Building Energy Performance Analysis on Building Energy Performance Analysis

  • Kim, Kee Han;Oh, John Kie-Whan
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.3-10
    • /
    • 2014
  • Impact by estimation error of hourly horizontal global solar radiation in a weather file on building energy performance was investigated in this study. There are a number of weather parameters in a given weather file, such as dry-bulb, wet-bulb, dew-point temperatures; wind speed and direction; station pressure; and solar radiation. Most of them except for solar radiation can be easily obtained from weather stations located on the sites worldwide. However, most weather stations, also including the ones in South Korea, do not measure solar radiation because the measuring equipment for solar radiation is expensive and difficult to maintain. For this reason, many researchers have studied solar radiation estimation models and suggested to apply them to predict solar radiation for different weather stations in South Korea, where the solar radiation is not measured. However, only a few studies have been conducted to identify the impact caused by estimation errors of various solar radiation models on building energy performance analysis. Therefore, four different weather files using different horizontal global solar radiation data, one using measured global solar radiation, and the other three using estimated global solar radiation models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM) were packed into TRY formatted weather files in this study. These were then used for office building energy simulations to compare their energy consumptions, and the results showed that there were differences in the energy consumptions due to these four different solar radiation data. Additionally, it was found that using hourly solar radiation from the estimation models, which had a similar hourly tendency with the hourly measured solar radiation, was the most important key for precise building energy simulation analysis rather than using the solar models that had the best of the monthly or yearly statistical indices.

Difference in Understanding of the Need for Using Radiation in Various Fields between Students Majoring in Radiation and Non-Radiation Related Studies (전공자와 비전공자 대학생 간의 방사선이용 분야별 필요성인식 수준 차이)

  • Han, Eun-Ok
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.230-236
    • /
    • 2011
  • As a way of improving social receptivity of using radiation, this study looked into the difference of understanding the need of using radiation in various fields between students majoring in radiation and non-radiation related studies, who will influence public opinion in the long term. This study also provides data needed for developing efficient strategies for projects promoting the public's awareness of using radiation. Of the students in the 79 schools sampled, 24%(177) were in 4 year colleges and 146 were junior colleges in educational statistics service (http://cesi.kedi.re.kr) In November 2010 1,945 students were selected as a sample, and they were given surveys on the need of using radiation in different fields. As a result, both between students majoring in radiation and non-radiation related studies showed a high level of understanding the need for radiation in the medical field and showed a low level of understanding of the need for radiation in the agricultural field. In all 6 fields of radiation use, students majoring in radiation related studies showed higher levels of understanding for the need to use radiation than students majoring in radiation and non-radiation related studies. In each field, male students and those who have experience medical radiation and relevant education had higher level of understanding. This shows we need to improve the understanding of the cases of female students and those who have not had experiences with medical radiation and to provide relevant education through various kinds of information. The characteristics of the groups that are shown in the results of this study are considered to be helpful for efficiently for project promoting the public's awareness of using radiation.

Review of Shielding Evaluation Methodology for Facilities Using kV Energy Radiation Generating Devices Based on the NCRP-49 Report

  • Na Hye Kwon;Hye Sung Park;Taehwan Kim;Sang Rok Kim;Kum Bae Kim;Jin Sung Kim;Sang Hyoun Choi;Dong Wook Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.53-62
    • /
    • 2022
  • In this study, we have investigated the shielding evaluation methodology for facilities using kV energy generators. We have collected and analysis of safety evaluation criteria and methodology for overseas facilities using radiation generators. And we investigated the current status of shielding evaluation of domestic industrial radiation generators. According to the statistical data from the Radiation Safety Information System, as of 2022, a total of 7,679 organizations are using radiation generating devices. Among them, 6,299 facilities use these devices for industrial purposes, which accounts for a considerable portion of radiation. The organizations that use these devices evaluate whether the exposure dose for workers and frequent visitors is suitable as per the limit regulated by the Nuclear Safety Act. Moreover, during this process, the safety shields are evaluated at the facilities that use the radiation generating devices. However, the facilities that use radiating devices having energy less than or equal to 6 MV for industrial purposes are still mostly evaluated and analyzed according to the National Council on Radiation Protection and Measurements 49 (NCRP 49) report published in 1976. We have investigated the technical standards of safety management, including the maximum permissible dose and parameters assessment criteria for facilities using radiation generating devices, based on the NCRP 49 and the American National Standards Institute/Health Physics Society N.43.3 reports, which are the representative reports related to radiation shielding management cases overseas.

Development of Radiation Restrictor for Secondary Radiation Shielding of Mobile X-ray Generator (이동형 X선 발생장치의 2차 방사선 차폐를 위한 선속조절기 개발 연구)

  • Koo, Bon-Yeoul;Kim, Gha-Jung
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.397-403
    • /
    • 2018
  • Mobile X-ray generators are used not in the radiation area but in open space, which causes the exposure of secondary radiation to the healthcare professionals, patients, guardians, etc., regardless of their intentions. This study aimed to investigate the shielding effect of the developed radiation restrictor to block the secondary radiation scattered during the use of mobile X-ray generator. Upon setting the condition of mobile X-ray generator with chest AP, spatial doses were measured by the existence of human equivalent phantom and radiation restrictor, and measured by the existences of phantom and radiation restrictor at the same length of 100 cm. Measurements were taken at intervals of 10 cm every $30^{\circ}$ from $-90^{\circ}$ (head direction) to $+90^{\circ}$ (body direction). Upon the study results, spatial doses in all direction were increased by 45% on average when using phantom in the same condition, however, they were decreased by 64% on average when using the developed radiation restrictor. The dose at 100 cm from the center of X-ray was $3.0{\pm}0.08{\mu}Gy$ without phantom and was increased by 40% with $4.2{\pm}0.08{\mu}Gy$ after phantom usage. The dose when using phantom and the developed radiation restrictor was $1.4{\pm}0.08{\mu}Gy$, which was decreased by 66% compared to the case without using them. Therefore, it is considered the scattered radiation can be shielded at 100-150 cm, the regulation of the distance between beds, effectively with the developed radiation restrictor when using mobile X-ray generators, which can lower the radiation exposure to the people nearby including healthcare professionals and patients.

Status of Domestic and International Recommendations for Protection Design and Evaluation of Medical Linear Accelerator Facilities

  • Choi, Sang Hyoun;Shin, Dong Oh;Shin, Jae-ik;Kwon, Na Hye;Ahn, So Hyun;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.83-91
    • /
    • 2021
  • Various types of high-precision radiotherapy, such as intensity-modulated radiation therapy (IMRT), tomotherapy (Tomo), and stereotactic body radiation therapy have been available since 1997. After being covered by insurance in 2015, the number of IMRT cases rapidly increased 18-fold from 2011 to 2018 in Korea. IMRT, which uses a high-beam irradiation monitor unit, requires higher shielding conditions than conventional radiation treatments. However, to date, research on the shielding of facilities using IMRT and the current understanding of its status are insufficient, and detailed safety regulation procedures have not been established. This study investigated the recommended criteria for the shielding evaluation of facilities using medical linear accelerators (LINACs), including 1) the current status of safety management regulations and systems in domestic and international facilities using medical LINACs and 2) the current status of the recommended standards for safety management in domestic and international facilities using medical LINACs. It is necessary to develop and introduce a safety management system for facilities using LINACs for clinical applications that is suitable for the domestic medical environment and corresponds to the safety management systems for LINACs used overseas.

An Analysis of Radiative Observation Environment for Korea Meteorological Administration (KMA) Solar Radiation Stations based on 3-Dimensional Camera and Digital Elevation Model (DEM) (3차원 카메라와 수치표고모델 자료에 따른 기상청 일사관측소의 복사관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Jo, Ji-Young
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.537-550
    • /
    • 2019
  • To analyze the observation environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we analyzed the skyline, Sky View Factor (SVF), and solar radiation due to the surrounding topography and artificial structures using a Digital Elevation Model (DEM), 3D camera, and solar radiation model. Solar energy shielding of 25 km around the station was analyzed using 10 m resolution DEM data and the skyline elevation and SVF were analyzed by the surrounding environment using the image captured by the 3D camera. The solar radiation model was used to assess the contribution of the environment to solar radiation. Because the skyline elevation retrieved from the DEM is different from the actual environment, it is compared with the results obtained from the 3D camera. From the skyline and SVF calculations, it was observed that some stations were shielded by the surrounding environment at sunrise and sunset. The topographic effect of 3D camera is therefore more than 20 times higher than that of DEM throughout the year for monthly accumulated solar radiation. Due to relatively low solar radiation in winter, the solar radiation shielding is large in winter. Also, for the annual accumulated solar radiation, the difference of the global solar radiation calculated using the 3D camera was 176.70 MJ (solar radiation with 7 days; suppose daily accumulated solar radiation 26 MJ) on an average and a maximum of 439.90 MJ (solar radiation with 17.5 days).

Some Measurements of Scattered Radiation from Various Radiation Shielding Materials (방사선(放射線) 차폐물질(遮蔽物質)에서 발생(發生)하는 산란선(散亂線)의 측정(測定))

  • Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.4 no.1
    • /
    • pp.15-22
    • /
    • 1981
  • Half value layer(radiation energy) of $90^{\circ}$ scattered radiation from various radiation shielding materials was measured at 1 m distance from the central ray of the primary beam. Scattered radiation was measured from 100 to 200 kVp for 0-2.0mm Cu+1.0mm Al added filter in the primary beam for a deep therapeutic unit, the obtained results were as follows: 1. The ratio of scattered radiation to primary radiation was increased by using lighter filter. 2. The ratio of scattered radiation to primary radiation was decreased by using heavier filter. 3. The ratio of scattered radiation to primary radiation was independent of tube voltage. 4. The scattered radiation of high energy was produced, when the effective atomic number and density of shielding material were high.

  • PDF

Simple Calculation Method as a Supplementary Radiation Safety Assessment for Facility with Radiation Generator

  • Kim, Sang-Tae
    • International Journal of Contents
    • /
    • v.14 no.4
    • /
    • pp.65-69
    • /
    • 2018
  • The objective of this study was to conduct a radiation shielding analysis for the facility equipped with radiation generator. The analysis was carried out in two aspects. First, from the aspect of the effect caused by primary and leakage radiation. Second, effect of scattered radiation was evaluated by applying a simple calculation method based on a scattering rate concept since effect of scattered radiation is significantly important at maze entrance of the radiation facility. The calculated results obtained using the simple method were compared to the results calculated using Geant4 code and the measured values. The results calculated by the suggested method indicate that slight error exists in a radiation shielding analysis done at the maze entrance comparing to other two results, while the results evaluated at the outside of the maze entrance door are relatively consistent with other values.

Effects of the Radiation Benefits and Hazards on Overcoming Recognition of Fukushima Nuclear Disaster Using the Structural Equation Modeling (구조방정식모형을 이용한 방사선 이익성과 위험성이 후쿠시마 원전사고 극복 인식에 미치는 영향)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The purpose of this study was to analyze the structural relationship between radiation hazards and radiation benefits effecting on overcoming recognition of Fukushima nuclear disaster (FND) in Japan by using structural equation modeling (SEM). The subjects were 248 undergraduates from one university in Chungbuk province in Korea. From June 1, 2017 to July 30, 2017, we conducted a questionnaire survey on the radiation hazards and radiation benefits and on the overcoming recognition of FND. As a result, it showed that the recognition of radiation hazards has a significant effect on the benefits of radiation, but does not directly affect the overcoming recognition of FND. However, the recognition of radiation benefits has been mediating between radiation hazards perception and the overcoming recognition of FND. Therefore, it can be empirically confirmed that despite the radiation hazards the recognition of overcoming the FND depends on the level of radiation benefits by using the SEM.

A study on radiation safety education, knowledge, and practice in using portable intraoral X-ray equipment of dental hygienist's (치과위생사의 이동형 구내방사선 촬영에 관한 방사선 방어 교육, 지식, 수행에 관한 연구)

  • Ryu, Jeong-Min;Kang, Bo-Sun;Kim, Seol-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.17 no.6
    • /
    • pp.1053-1065
    • /
    • 2017
  • Objectives: The purpose of this study is to evaluate radiation safety education, knowledge and practice of dental hygienists in using handheld portable intraoral X-ray equipment and to suggest the need for radiation safety education in using handheld portable intraoral X-ray equipment. Methods: We surveyed 223 dental hygienists from July, 2017 to August in the dental clinics of Daejeon, Seoul and Gyeonggi area. Results: Radiation safety educational experience was higher in a year's career (72.9%), than 3 years experience (32.5%) (p<0.05). 82.7% of dental clinic workers took university education for radiation safety education while 55.6% of dental hospital workers took company training (p<0.05). More than 70% of the subjects did not have experience of radiation safety education about using portable intraoral X-ray. Radiation safety knowledge was highest in a year's career (p<0.05). The cumulative dose, radiation sensitivity, and lead defense knowledge were high in all subjects, but knowledge related to scattering radiation and scattering radiation sources was low. Practice of portable intraoral X-ray safety was significantly lower than knowledge. Conclusions: Knowledge of portable intraoral radiography safety is available, but performance is poor. Even with the small amount of radiation exposure, the risk is perceivable. There is a need to actively utilize the provided radiation protection products. In order to do this, efforts should be made to improve knowledge and performance of radiation safety through not only college education but also postemployment training.