• Title/Summary/Keyword: User-based Collaboration Filtering

Search Result 12, Processing Time 0.029 seconds

Design and Implementation of Collaborative Filtering Application System using Apache Mahout -Focusing on Movie Recommendation System-

  • Lee, Jun-Ho;Joo, Kyung-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.125-131
    • /
    • 2017
  • It is not easy for the user to find the information that is appropriate for the user among the suddenly increasing information in recent years. One of the ways to help individuals make decisions in such a lot of information is the recommendation system. Although there are many recommendation methods for such recommendation systems, a representative method is collaborative filtering. In this paper, we design and implement the movie recommendation system on user-based collaborative filtering of apache mahout. In addition, Pearson correlation coefficient is used as a method of measuring the similarity between users. We evaluate Precision and Recall using the MovieLens 100k dataset for performance evaluation.

A Prospective Extension Through an Analysis of the Existing Movie Recommendation Systems and Their Challenges (기존 영화 추천시스템의 문헌 고찰을 통한 유용한 확장 방안)

  • Cho Nwe Zin, Latt;Muhammad, Firdaus;Mariz, Aguilar;Kyung-Hyune, Rhee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.1
    • /
    • pp.25-40
    • /
    • 2023
  • Recommendation systems are frequently used by users to generate intelligent automatic decisions. In the study of movie recommendation system, the existing approach uses largely collaboration and content-based filtering techniques. Collaborative filtering considers user similarity, while content-based filtering focuses on the activity of a single user. Also, mixed filtering approaches that combine collaborative filtering and content-based filtering are being used to compensate for each other's limitations. Recently, several AI-based similarity techniques have been used to find similarities between users to provide better recommendation services. This paper aims to provide the prospective expansion by deriving possible solutions through the analysis of various existing movie recommendation systems and their challenges.

An Inference System Using BIG5 Personality Traits for Filtering Preferred Resource

  • Jong-Hyun, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • In the IoT environment, various objects mutually interactive, and various services can be composed based on this environment. In the previous study, we have developed a resource collaboration system to provide services by substituting limited resources in the user's personal device using resource collaboration. However, in the preceding system, when the number of resources and situations increases, the inference time increases exponentially. To solve this problem, this study proposes a method of classifying users and resources by applying the BIG5 user type classification model. In this paper, we propose a method to reduce the inference time by filtering the user's preferred resources through BIG5 type-based preprocessing and using the filtered resources as an input to the recommendation system. We implement the proposed method as a prototype system and show the validation of our approach through performance and user satisfaction evaluation.

An Agent-based Approach for Distributed Collaborative Filtering (분산 협력 필터링에 대한 에이전트 기반 접근 방법)

  • Kim, Byeong-Man;Li, Qing;Howe Adele E.;Yeo, Dong-Gyu
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.953-964
    • /
    • 2006
  • Due to the usefulness of the collaborative filtering, it has been widely used in both the research and commercial field. However, there are still some challenges for it to be more efficient, especially the scalability problem, the sparsity problem and the cold start problem. In this paper. we address these problems and provide a novel distributed approach based on agents collaboration for the problems. We have tried to solve the scalability problem by making each agent save its users ratings and broadcast them to the users friends so that only friends ratings and his own ratings are kept in an agents local database. To reduce quality degradation of recommendation caused by the lack of rating data, we introduce a method using friends opinions instead of real rating data when they are not available. We also suggest a collaborative filtering algorithm based on user profile to provide new users with recommendation service. Experiments show that our suggested approach is helpful to the new user problem as well as is more scalable than traditional centralized CF filtering systems and alleviate the sparsity problem.

A Study on Recommender Technique Applying User Activity and Time Information (사용자 활동과 시간 정보를 적용한 추천 기법에 관한 연구)

  • Yun, So-Young;Youn, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.543-551
    • /
    • 2015
  • As the use of internet and mobile devices became generalized, users utilizing search and recommendation in order to find the information they want in the midst of various websites have become common. In order to recommend more appropriate item for users, this paper proposes a recommendation technique that reflects the users' preference change following the flow of time by applying users' activity and time information. The proposed technique, after classifying the data in categories including the tag information that is considered at the time of choosing the items, only uses the data that users' preference change following the flow of time is reflected. For the users who prefer the corresponding category, the item that is extracted by applying tag information to collaboration filtering technique is recommended and for general users, items are recommended based on the ranking calculated by using the tag information. The proposed technique was experimented by using hetrec2011-movielens-2k data set. The experiment result indicated that the proposed technique has been more enhanced the accuracy, appropriacy, compared to item-based, user-based method.

Development of User Based Recommender System using Social Network for u-Healthcare (사회 네트워크를 이용한 사용자 기반 유헬스케어 서비스 추천 시스템 개발)

  • Kim, Hyea-Kyeong;Choi, Il-Young;Ha, Ki-Mok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.181-199
    • /
    • 2010
  • As rapid progress of population aging and strong interest in health, the demand for new healthcare service is increasing. Until now healthcare service has provided post treatment by face-to-face manner. But according to related researches, proactive treatment is resulted to be more effective for preventing diseases. Particularly, the existing healthcare services have limitations in preventing and managing metabolic syndrome such a lifestyle disease, because the cause of metabolic syndrome is related to life habit. As the advent of ubiquitous technology, patients with the metabolic syndrome can improve life habit such as poor eating habits and physical inactivity without the constraints of time and space through u-healthcare service. Therefore, lots of researches for u-healthcare service focus on providing the personalized healthcare service for preventing and managing metabolic syndrome. For example, Kim et al.(2010) have proposed a healthcare model for providing the customized calories and rates of nutrition factors by analyzing the user's preference in foods. Lee et al.(2010) have suggested the customized diet recommendation service considering the basic information, vital signs, family history of diseases and food preferences to prevent and manage coronary heart disease. And, Kim and Han(2004) have demonstrated that the web-based nutrition counseling has effects on food intake and lipids of patients with hyperlipidemia. However, the existing researches for u-healthcare service focus on providing the predefined one-way u-healthcare service. Thus, users have a tendency to easily lose interest in improving life habit. To solve such a problem of u-healthcare service, this research suggests a u-healthcare recommender system which is based on collaborative filtering principle and social network. This research follows the principle of collaborative filtering, but preserves local networks (consisting of small group of similar neighbors) for target users to recommend context aware healthcare services. Our research is consisted of the following five steps. In the first step, user profile is created using the usage history data for improvement in life habit. And then, a set of users known as neighbors is formed by the degree of similarity between the users, which is calculated by Pearson correlation coefficient. In the second step, the target user obtains service information from his/her neighbors. In the third step, recommendation list of top-N service is generated for the target user. Making the list, we use the multi-filtering based on user's psychological context information and body mass index (BMI) information for the detailed recommendation. In the fourth step, the personal information, which is the history of the usage service, is updated when the target user uses the recommended service. In the final step, a social network is reformed to continually provide qualified recommendation. For example, the neighbors may be excluded from the social network if the target user doesn't like the recommendation list received from them. That is, this step updates each user's neighbors locally, so maintains the updated local neighbors always to give context aware recommendation in real time. The characteristics of our research as follows. First, we develop the u-healthcare recommender system for improving life habit such as poor eating habits and physical inactivity. Second, the proposed recommender system uses autonomous collaboration, which enables users to prevent dropping and not to lose user's interest in improving life habit. Third, the reformation of the social network is automated to maintain the quality of recommendation. Finally, this research has implemented a mobile prototype system using JAVA and Microsoft Access2007 to recommend the prescribed foods and exercises for chronic disease prevention, which are provided by A university medical center. This research intends to prevent diseases such as chronic illnesses and to improve user's lifestyle through providing context aware and personalized food and exercise services with the help of similar users'experience and knowledge. We expect that the user of this system can improve their life habit with the help of handheld mobile smart phone, because it uses autonomous collaboration to arouse interest in healthcare.

A Design of Customized Market Analysis Scheme Using SVM and Collaboration Filtering Scheme (SVM과 협업적 필터링 기법을 이용한 소비자 맞춤형 시장 분석 기법 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.609-616
    • /
    • 2016
  • This paper is proposed a customized market analysis method using SVM and collaborative filtering. The proposed customized market analysis scheme is consists of DC(Data Classification) module, ICF(Improved Collaborative Filtering) module, and CMA(Customized Market Analysis) module. DC module classifies the characteristics of on-line and off-line shopping mall and traditional markets into price, quality, and quantity using SVM. ICF module calculates the similarity by adding age weight and job weight, and generates network using the similarity of purchased item each users, and makes a recommendation list of neighbor nodes. And CMA module provides the result of customized market analysis using the data classification result of DC module and the recommendation list of ICF module. As a result of comparing the proposed customized recommendation list with the existing user based recommendation list, the case of recommendation list using the existing collaborative filtering scheme, precision is 0.53, recall is 0.56, and F-measure is 0.57. But the case of proposed customized recommendation list, precision is 0.78, recall is 0.85, and F-measure is 0.81. That is, the proposed customized recommendation list shows more precision.

Music Information Retrieval System Using Collaboration Filtering based on User Life-Log (Life-Log기반 협업 필터링을 이용한 음악정보검색 시스템)

  • Yang, Young-Wook;Park, Ki-Nam;Lim, Heui-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.772-776
    • /
    • 2009
  • 최근 디지털 음악 시장의 비약적인 발전과 더불어 컴퓨터 시스템을 이용한 음악정보검색 시스템의 연구가 활발히 진행되고 있다. 하지만 대부분의 연구가 시스템 구현에 목적이 있고, 시스템에서 행해지는 사용자의 행위에 초점을 맞추기 있기 때문에 사용자들이 정보요구에 대한 만족도가 크지 못한 실정이다. 본 논문에서는 사용자의 상황인지를 통해 구축된 Life-Log를 기반으로 비슷한 성향의 사용자들을 필터링하는 협업필터링 기법을 사용한 음악정보검색 시스템을 제안한다. 실험결과 음악파일에 대한 메타데이터 검색 시스템에 비해 더 나은 사용자 만족도를 보였다.

  • PDF

A Comparative Study on Over-The-Tops, Netflix & Amazon Prime Video: Based on the Success Factors of Innovation

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.62-74
    • /
    • 2021
  • We compare Over-the-Tops (OTTs), Netflix and Amazon Prime Video (APV) with five success factors of innovation. Firstly, Netflix offers better personalized service than APV, because APV has collaborative filtering algorithms to recommend safe bets, not the customers really want. Secondly, APV' user interface is undercooked to lock the members in, even if it has more content and better price offer than Netflix retaining its loyal customers despite the price increase. Thirdly, Netflix has simple subscription model with three tiering, but APV has complicated pricing model having annual and monthly, APV and Prime Video (AV) app, Amazon subscription and extra payment of Amazon Prime Channels (APCs). Fourthly, Amazon has fewer partnership than Netflix especially when it comes to local TV series. Instead, Amazon has live TV channel collaboration including sports content. Lastly, both have strategic and operational agility in their organization well.

How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores (평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구)

  • Hyun, Jiyeon;Ryu, Sangyi;Lee, Sang-Yong Tom
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.219-239
    • /
    • 2019
  • As the importance of providing customized services to individuals becomes important, researches on personalized recommendation systems are constantly being carried out. Collaborative filtering is one of the most popular systems in academia and industry. However, there exists limitation in a sense that recommendations were mostly based on quantitative information such as users' ratings, which made the accuracy be lowered. To solve these problems, many studies have been actively attempted to improve the performance of the recommendation system by using other information besides the quantitative information. Good examples are the usages of the sentiment analysis on customer review text data. Nevertheless, the existing research has not directly combined the results of the sentiment analysis and quantitative rating scores in the recommendation system. Therefore, this study aims to reflect the sentiments shown in the reviews into the rating scores. In other words, we propose a new algorithm that can directly convert the user 's own review into the empirically quantitative information and reflect it directly to the recommendation system. To do this, we needed to quantify users' reviews, which were originally qualitative information. In this study, sentiment score was calculated through sentiment analysis technique of text mining. The data was targeted for movie review. Based on the data, a domain specific sentiment dictionary is constructed for the movie reviews. Regression analysis was used as a method to construct sentiment dictionary. Each positive / negative dictionary was constructed using Lasso regression, Ridge regression, and ElasticNet methods. Based on this constructed sentiment dictionary, the accuracy was verified through confusion matrix. The accuracy of the Lasso based dictionary was 70%, the accuracy of the Ridge based dictionary was 79%, and that of the ElasticNet (${\alpha}=0.3$) was 83%. Therefore, in this study, the sentiment score of the review is calculated based on the dictionary of the ElasticNet method. It was combined with a rating to create a new rating. In this paper, we show that the collaborative filtering that reflects sentiment scores of user review is superior to the traditional method that only considers the existing rating. In order to show that the proposed algorithm is based on memory-based user collaboration filtering, item-based collaborative filtering and model based matrix factorization SVD, and SVD ++. Based on the above algorithm, the mean absolute error (MAE) and the root mean square error (RMSE) are calculated to evaluate the recommendation system with a score that combines sentiment scores with a system that only considers scores. When the evaluation index was MAE, it was improved by 0.059 for UBCF, 0.0862 for IBCF, 0.1012 for SVD and 0.188 for SVD ++. When the evaluation index is RMSE, UBCF is 0.0431, IBCF is 0.0882, SVD is 0.1103, and SVD ++ is 0.1756. As a result, it can be seen that the prediction performance of the evaluation point reflecting the sentiment score proposed in this paper is superior to that of the conventional evaluation method. In other words, in this paper, it is confirmed that the collaborative filtering that reflects the sentiment score of the user review shows superior accuracy as compared with the conventional type of collaborative filtering that only considers the quantitative score. We then attempted paired t-test validation to ensure that the proposed model was a better approach and concluded that the proposed model is better. In this study, to overcome limitations of previous researches that judge user's sentiment only by quantitative rating score, the review was numerically calculated and a user's opinion was more refined and considered into the recommendation system to improve the accuracy. The findings of this study have managerial implications to recommendation system developers who need to consider both quantitative information and qualitative information it is expect. The way of constructing the combined system in this paper might be directly used by the developers.