• Title/Summary/Keyword: User Equilibrium

Search Result 120, Processing Time 0.03 seconds

Analysis of the Price-Selection Problem in Priority-based Scheduling (우선순위 방식 스케쥴링에서의 가격선택 문제의 분석)

  • Park, Sun-Ju
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.2
    • /
    • pp.183-192
    • /
    • 2006
  • This paper analyzes the price-selection problem under priority-based scheduling for QoS (Quality of Service) network services, i.e., how to determine the price associated with each service level. In particular, we focus on the problems with the pricing mechanism based on equilibrium analysis. We claim that the assumptions needed to produce equilibrium nay not hold in some important environments. Specifically, (a) the individual user's impact on the system is not infinitesimal and (b) users do not always have up-to-date global system-status knowledge crucial for optimal user decisions required for equilibrium. These may make the equilibrium models inaccurate in realistic environments. We examine the accuracy of some existing equilibrium methods by using a dynamic model that we have developed for system behavior analysis. The analysis indicates that equilibrium methods fail to model accurately the system behavior in some realistic environments.

A Model for Detecting Braess Paradox in General Transportation Networks (일반 교통망에서 브라이스 역설 발견 모형)

  • Park, Koo-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.4
    • /
    • pp.19-35
    • /
    • 2007
  • This study is for detecting the Braess Paradox by stable dynamics in general transportation networks. Stable dynamics, suggested by Nesterov and de Palma[18], is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with user equilibrium model based on link latency function in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on the congestion. Therefore it is expected to be an useful analysis tool for transportation planners. The phenomenon that increasing capacity of a network, for example creating new links, may decrease its performance is called Braess Paradox. It has been studied intensively under user equilibrium model with link latency function since Braess[5] demonstrated a paradoxical example. However it is an open problem to detect the Braess Paradox under stable dynamics. In this study, we suggest a method to detect the Paradox in general networks under stable dynamics. In our model, we decide whether Braess Paradox will occur in a given network. We also find Braess links or Braess crosses if a network permits the paradox. We also show an example how to apply it in a network.

A Genetic Algorithm for Trip Distribution and Traffic Assignment from Traffic Counts in a Stochastic User Equilibrium

  • Sung, Ki-Seok;Rakha, Hesham
    • Management Science and Financial Engineering
    • /
    • v.15 no.1
    • /
    • pp.51-69
    • /
    • 2009
  • A network model and a Genetic Algorithm (GA) is proposed to solve the simultaneous estimation of the trip distribution and traffic assignment from traffic counts in the congested networks in a logit-based Stochastic User Equilibrium (SUE). The model is formulated as a problem of minimizing a non-linear objective function with the linear constraints. In the model, the flow-conservation constraints are utilized to restrict the solution space and to force the link flows become consistent to the traffic counts. The objective of the model is to minimize the discrepancies between two sets of link flows. One is the set of link flows satisfying the constraints of flow-conservation, trip production from origin, trip attraction to destination and traffic counts at observed links. The other is the set of link flows those are estimated through the trip distribution and traffic assignment using the path flow estimator in the logit-based SUE. In the proposed GA, a chromosome is defined as a real vector representing a set of Origin-Destination Matrix (ODM), link flows and route-choice dispersion coefficient. Each chromosome is evaluated by the corresponding discrepancies. The population of the chromosome is evolved by the concurrent simplex crossover and random mutation. To maintain the feasibility of solutions, a bounded vector shipment technique is used during the crossover and mutation.

A Power Allocation Algorithm Based on Variational Inequality Problem for Cognitive Radio Networks

  • Zhou, Ming-Yue;Zhao, Xiao-Hui
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.417-427
    • /
    • 2017
  • Power allocation is an important factor for cognitive radio networks to achieve higher communication capacity and faster equilibrium. This paper considers power allocation problem to each cognitive user to maximize capacity of the cognitive systems subject to the constraints on the total power of each cognitive user and the interference levels of the primary user. Since this power control problem can be formulated as a mixed-integer nonlinear programming (NP) equivalent to variational inequality (VI) problem in convex polyhedron which can be transformed into complementary problem (CP), we utilize modified projection method to solve this CP problem instead of finding NP solution and give a power control allocation algorithm with a subcarrier allocation scheme. Simulation results show that the proposed algorithm performs well and effectively reduces the system power consumption with almost maximum capacity while achieve Nash equilibrium.

Competitive Resource Sharing Based on Game Theory in Cooperative Relay Networks

  • Zhang, Guopeng;Cong, Li;Zhao, Liqiang;Yang, Kun;Zhang, Hailin
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.89-91
    • /
    • 2009
  • This letter considers the problem of resource sharing among a relay and multiple user nodes in cooperative transmission networks. We formulate this problem as a sellers' market competition and use a noncooperative game to jointly consider the benefits of the relay and the users. We also develop a distributed algorithm to search the Nash equilibrium, the solution of the game. The convergence of the proposed algorithm is analyzed. Simulation results demonstrate that the proposed game can stimulate cooperative diversity among the selfish user nodes and coordinate resource allocation among the user nodes effectively.

  • PDF

An Offloading Strategy for Multi-User Energy Consumption Optimization in Multi-MEC Scene

  • Li, Zhi;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4025-4041
    • /
    • 2020
  • Mobile edge computing (MEC) is capable of providing services to smart devices nearby through radio access networks and thus improving service experience of users. In this paper, an offloading strategy for the joint optimization of computing and communication resources in multi-user and multi-MEC overlapping scene was proposed. In addition, under the condition that wireless transmission resources and MEC computing resources were limited and task completion delay was within the maximum tolerance time, the optimization problem of minimizing energy consumption of all users was created, which was then further divided into two subproblems, i.e. offloading strategy and resource allocation. These two subproblems were then solved by the game theory and Lagrangian function to obtain the optimal task offloading strategy and resource allocation plan, and the Nash equilibrium of user offloading strategy games and convex optimization of resource allocation were proved. The simulation results showed that the proposed algorithm could effectively reduce the energy consumption of users.

An Efficient Game Theory-Based Power Control Algorithm for D2D Communication in 5G Networks

  • Saif, Abdu;Noordin, Kamarul Ariffin bin;Dimyati, Kaharudin;Shah, Nor Shahida Mohd;Al-Gumaei, Yousef Ali;Abdullah, Qazwan;Alezabi, Kamal Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2631-2649
    • /
    • 2021
  • Device-to-Device (D2D) communication is one of the enabling technologies for 5G networks that support proximity-based service (ProSe) for wireless network communications. This paper proposes a power control algorithm based on the Nash equilibrium and game theory to eliminate the interference between the cellular user device and D2D links. This leadsto reliable connectivity with minimal power consumption in wireless communication. The power control in D2D is modeled as a non-cooperative game. Each device is allowed to independently select and transmit its power to maximize (or minimize) user utility. The aim is to guide user devices to converge with the Nash equilibrium by establishing connectivity with network resources. The proposed algorithm with pricing factors is used for power consumption and reduces overall interference of D2Ds communication. The proposed algorithm is evaluated in terms of the energy efficiency of the average power consumption, the number of D2D communication, and the number of iterations. Besides, the algorithm has a relatively fast convergence with the Nash Equilibrium rate. It guarantees that the user devices can achieve their required Quality of Service (QoS) by adjusting the residual cost coefficient and residual energy factor. Simulation results show that the power control shows a significant reduction in power consumption that has been achieved by approximately 20% compared with algorithms in [11].

Strategy for Task Offloading of Multi-user and Multi-server Based on Cost Optimization in Mobile Edge Computing Environment

  • He, Yanfei;Tang, Zhenhua
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.615-629
    • /
    • 2021
  • With the development of mobile edge computing, how to utilize the computing power of edge computing to effectively and efficiently offload data and to compute offloading is of great research value. This paper studies the computation offloading problem of multi-user and multi-server in mobile edge computing. Firstly, in order to minimize system energy consumption, the problem is modeled by considering the joint optimization of the offloading strategy and the wireless and computing resource allocation in a multi-user and multi-server scenario. Additionally, this paper explores the computation offloading scheme to optimize the overall cost. As the centralized optimization method is an NP problem, the game method is used to achieve effective computation offloading in a distributed manner. The decision problem of distributed computation offloading between the mobile equipment is modeled as a multi-user computation offloading game. There is a Nash equilibrium in this game, and it can be achieved by a limited number of iterations. Then, we propose a distributed computation offloading algorithm, which first calculates offloading weights, and then distributedly iterates by the time slot to update the computation offloading decision. Finally, the algorithm is verified by simulation experiments. Simulation results show that our proposed algorithm can achieve the balance by a limited number of iterations. At the same time, the algorithm outperforms several other advanced computation offloading algorithms in terms of the number of users and overall overheads for beneficial decision-making.

Optimal Network Design Using Sensitivity Analysis for Variable Demand Network Equilibrium (가변수요 통행배정의 민감도 분석을 통한 최적가로망 설계)

  • 권용석;박병정;이성모
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.1
    • /
    • pp.89-99
    • /
    • 2001
  • The conventional studies on equilibrium network design problem(ENDP) with fixed travel demand models assume that the future OD travel demand might not be changed even if the structure and the capacity of the network are improved. But this fixed demand assumption may loose its validity in the long-range network design because OD travel demand actually shifts with the network service level. Thus, it is desirable to involve the variable travel demand which is determined endogenously in the model in the optimal network design. In this paper a hi-level model formulation and solution procedure for ENDP with variable travel demand are presented. Firstly It is considered how to measure the net user benefits to be derived from the improved in link capacities, and the equilibrium network design problem considered here is to maximize the increase of net user benefit which results from a set of lift capacity enhancements within the budget constraints, while the OD travel demands and link travel times are obtained by solving the lower level network equilibrium problem with variable demand. And secondly sensitivity analysis is carried out to find the links to which the network equilibrium flow pattern is the most sensitive. Finally numerical example with simple network is carried out to test the validity of the model.

  • PDF