• 제목/요약/키워드: Usenet news filtering

검색결과 5건 처리시간 0.021초

코호넨 신경망을 사용한 유즈넷 뉴스 필터링T (Usenet News Filtering using Kohonen Network)

  • 진승훈;김종완;김병만
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.274-276
    • /
    • 2002
  • With the proliferation of internet, it is increasingly needed to realize personalized news filtering service reflecting user's interest. In this Paper, we implement a filtering agent for Personalized news service. In the proposed system, Kohonen network for an unsupervised learning is used to train keywords provided by users and the personalization is achieved by using the trained neural network. After we trained and tested our filtering agent we could provide users news groups considering their interests.

  • PDF

사용자 프로파일에 기초한 유즈넷 뉴스그룹 자동 결정 방법 (Automatic Determination of Usenet News Groups from User Profile)

  • 김종완;조규철;김희재;김병만
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.142-149
    • /
    • 2004
  • 많은 양의 유즈넷 뉴스 중에서 사용자가 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것은 중요하다. 그러나 뉴스 문서는 이메일과 달라서 미리 자신에게 맞는 뉴스그룹을 등록해 주어야만 정보를 얻을 수 있다. 하지만, 초보자인 경우는 어떤 뉴스그룹이 자신의 관심사와 관련이 있는지를 판단하기가 용이치 않다. 따라서, 본 연구에서는 다양한 뉴스그룹들 중에서 사용자의 취향과 유사한 뉴스그룹들을 코호넨 신경망을 이용하여 추천해주는 방법을 제공한다. 신경망을 학습시키기 위한 뉴스 문서의 키워드들을 선택하기 위해 예제 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표 용어들을 선택한다. 하지만 신경망의 학습패턴을 관찰해 보면, 많은 부분이 비어있는 희소성 문제를 발견할 수 있다. 이에 본 연구에서는 통계적인 결정계수를 도입하여 불필요한 차원을 제거한 후 신경망을 학습시키는 새로운 방법을 제안한다. 제안된 방법은 모든 차원을 활용할 때 보다 클러스터내 거리와 클러스터간 거리의 척도를 이용한 클러스터 중첩도 면에서 우수한 분류 성능을 보여줌을 확인하였다.

코호넨 신경망을 사용한 유즈넷 뉴스 필터링 에이전트 구현 (Implementation of Usenet News Filtering Agent using Kohonen Network)

  • 진승훈;김종완;이승아;김영순;김병만
    • 한국산업정보학회논문지
    • /
    • 제7권5호
    • /
    • pp.21-28
    • /
    • 2002
  • 인터넷이 활성화되고 인터넷 사용자도 급증하면서 여러 형태의 많은 정보들이 인터넷을 통해 사용자들에게 제공되어지고 있다. 그 중에서도 많은 뉴스서버들을 통해 제공되는 다양한 뉴스들 중에서 사용자가 원하는 뉴스만 필터링 해서 제공받을 수 있는 개인화 서비스에 대한 요구가 증가하고 있다. 본 논문에서는 이러한 뉴스 서비스의 개인화에 대한 요구를 충족시키기 위해 뉴스 필터링 에이전트 시스템을 구현하였다. 구현된 시스템은 코호넨 신경망을 이용해서 사용자가 입력한 키워드에 대해 학습을 실시하여 뉴스그룹을 분류하고, 이를 통해 사용자가 원하는 뉴스만을 제공해 준다. 임의의 사용자를 대상으로 뉴스선호도를 학습한 후 테스트한 결과, 사용자의 선호도를 반영한 뉴스 그룹들을 제시할 수 있었다.

  • PDF

퍼지추론과 코호넨 신경망을 사용한 유즈넷 뉴스 필터링 (Usenet News Filtering using Fuzzy Inference and Kohonen Network)

  • 김종완;조규철;김병익
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2003년도 춘계학술대회
    • /
    • pp.47-51
    • /
    • 2003
  • 인터넷을 통해 제공되는 맡은 양의 뉴스 정보 중에서 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것이 필요하다. 먼저, 인터넷에 접속된 뉴스서버들의 뉴스 문서를 각 그룹별로 수집한다. 수집된 뉴스 문서를 대상으로 퍼지추론을 통하여 문서를 대표하는 키워드를 추출하여 데이터베이스에 저장한다. 각 뉴스그룹의 문서에서 단어들을 분석하여 입력된 단어들의 개수를 이용하여 정규화 시켜서 대표적인 비지도학습 신경망인 코호넨 신경망을 사용하여 학습시킨다. 코호넨 신경망으로 추출된 단어들의 연관성을 활용하여 뉴스그룹을 클러스터링한다. 최종적으로 사용자가 관심 있는 키워드를 입력하면, 학습된 신경망이 유사한 뉴스그룹들을 사용자에게 제시해준다.

  • PDF

통계적 결정계수를 이용한 유즈넷 뉴스 필터링 (Usenet News Filtering by Using Statistical Coefficient of Determination)

  • 김종완;김희재;김병만
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2003년도 추계공동학술대회
    • /
    • pp.747-752
    • /
    • 2003
  • 많은 양의 유즈넷 뉴스 중에서 사용자가 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것은 중요하다. 그러나 뉴스 문서는 이메일과 달라서 미리 자신에게 맞는 뉴스그룹을 등록해 주어야만 정보를 얻을 수 있다. 본 연구에서는 다양한 뉴스그룹들 중에서 사용자와 취향이 가장 유사한 뉴스그룹을 분류하여 뉴스 문서의 키워드들을 선택하기 위해 예제 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표용어들을 선택한다. 이에 본 연구에서는 통계적인 결정계수를 도입하여 불필요한 차원을 제거한 후 신경망을 학습시키는 새로운 방법을 제안한다. 제안된 방법은 모든 차원을 활용할 때 보다 클러스터간 거리와 표준편차, 클러스터간 거리의 척도 면에서 우수한 분류 성능을 보여줌을 확인하였다.

  • PDF