• Title/Summary/Keyword: Usability of 3D Graphics with 3D Reality

Search Result 6, Processing Time 0.018 seconds

Financial Data Assessment Using Table-Graph-Mixed Reality Visualization

  • Tanlamai, Uthai;Savetpanuvong, Phannaphatr;Kunarittipol, Wisit
    • Journal of Information Technology Applications and Management
    • /
    • v.19 no.1
    • /
    • pp.13-24
    • /
    • 2012
  • Usability and knowledge drawn from utilizing various ways of representing accounting data were examined. Classroom experiments were conducted to compare students' assessment of financial data using table of numbers, 2-dimensional column graphs (2D), 3-dimensional column graphs (3D), and mixed reality visualization of true 3-dimensional graphs (MR). The results showed that in assessing the financial status and performance of a firm, Table of numbers and MR took longer than 2D and 3D graphs. The time spent on true 3D graphs using MR technology was about the same as Table of numbers. When compared the assessment scores of the firm's financial status and performance between participants and experts, the difference was the least when participants used 2D graphs. However, MR was seen as being a new way to provide data of greater complexity and was very useful for financial information.

Mixed Reality Visualization of Financial Accounting Data

  • Tanlamai, Uthai;Savetpanuvong, Phannaphatr;Kunarittipol, Wisit
    • Journal of Information Technology Applications and Management
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • Mixed reality (MR) representation of accounting numbers is used as an alternative way of virtually engaging users of real three dimensional graphics of financialdata. An experiment was conducted to compare the usability and knowledge drawn from utilizing a table of numbers versus MR representations. The results showed that when MR was used, the participants' ratings of the firm's financial status and performance were more congruent with those of experts than when a table was employed. Also, MR was seen as providing less complex information with a shorter amount of time being spent and was perceived as being easy and useful.

Improvement Depth Perception of Volume Rendering using Virtual Reality (가상현실을 통한 볼륨렌더링 깊이 인식 향상)

  • Choi, JunYoung;Jeong, HaeJin;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.29-40
    • /
    • 2018
  • Direct volume rendering (DVR) is a commonly used method to visualize inner structures in 3D volumetric datasets. However, conventional volume rendering on a 2D display lacks depth perception due to dimensionality reduction caused by ray casting. In this work, we investigate how emerging Virtual Reality (VR) can improve the usability of direct volume rendering. We developed real-time high-resolution DVR system in virtual reality, and measures the usefulness of volume rendering with improved depth perception via a user study conducted by 38 participants. The result indicates that virtual reality significantly improves the usability of DVR by allowing better depth perception.

Production of Virtual Electrical Circuit Practice Education Contents based on Mixed Reality using Meta Quest Pro (메타 퀘스트 프로를 활용한 혼합현실 기반 가상 전기회로 실습교육 콘텐츠 제작)

  • Sumin Kong;Jongseon Kim;Goohyun Jeong;Gyeongbin Roh;Esther Park;Yunsik Cho;Jinmo Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.61-69
    • /
    • 2024
  • Mixed reality(MR) technology combines the advantages of virtual reality(VR) and augmented reality(AR) technology, allowing MR users to interact with virtual objects against the background of the real world. In addition, since virtual objects interact with the real world, users can experience a higher immersion. This study proposes electric circuit practical training content using Meta Quest Pro to produce immersive MR content based on reality. To this end, first, the development process for producing MR content by linking Meta Quest Pro equipment with the Unity 3D engine is organized. Then, based on the traditional electric circuit practical training method used in elementary school science classes, virtual electric circuit practical training content with the same training method and operation process is produced based on MR. Finally, survey experiments are conducted to analyze the presence and experience of the MR-based educational environment provided using the produced content. Through this, the usability of the proposed practical training content is evaluated and future research directions are suggested.

Gadget Arms: Interactive Data Visualization using Hand Gesture in Extended Reality (가젯암: 확장현실을 위한 손 제스처 기반 대화형 데이터 시각화 시스템)

  • Choi, JunYoung;Jeong, HaeJin;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.2
    • /
    • pp.31-41
    • /
    • 2019
  • Extended Reality (XR), such as virtual and augmented reality, has huge potential for immersive data visualization and analysis. In XR, users can interact with data and other users realistically by navigating the shared virtual space, allowing for more intuitive data analysis. However, creating a visualization in XR also poses a challenge because complicated, low-level programming is required, which hinders broad adaptation in visual analytics. This paper proposes an interactive visualization authoring tool based on hand gesture for immersive data visualization-Gadget Arms. The proposed system provides a novel user interaction to create and place visualization in the 3D virtual world. This simple, but intuitive, user interaction enables user designs the entire visualization space in the XR without using a host computer and low-level programming. Our user study also confirmed that the proposed user interaction significantly improves the usability of the visualization authoring tool.

Character Motion Control by Using Limited Sensors and Animation Data (제한된 모션 센서와 애니메이션 데이터를 이용한 캐릭터 동작 제어)

  • Bae, Tae Sung;Lee, Eun Ji;Kim, Ha Eun;Park, Minji;Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.85-92
    • /
    • 2019
  • A 3D virtual character playing a role in a digital story-telling has a unique style in its appearance and motion. Because the style reflects the unique personality of the character, it is very important to preserve the style and keep its consistency. However, when the character's motion is directly controlled by a user's motion who is wearing motion sensors, the unique style can be discarded. We present a novel character motion control method that uses only a small amount of animation data created only for the character to preserve the style of the character motion. Instead of machine learning approaches requiring a large amount of training data, we suggest a search-based method, which directly searches the most similar character pose from the animation data to the current user's pose. To show the usability of our method, we conducted our experiments with a character model and its animation data created by an expert designer for a virtual reality game. To prove that our method preserves well the original motion style of the character, we compared our result with the result obtained by using general human motion capture data. In addition, to show the scalability of our method, we presented experimental results with different numbers of motion sensors.