IEMEK Journal of Embedded Systems and Applications
/
v.10
no.1
/
pp.13-23
/
2015
Recently, a few image-processing based mobile urine testers have actively been studied since the urine-analysis result can be available to the user in real time immediately after the test is done. However, the accuracy of test result can be severely degraded due to variable illumination environments and a variety of manners to capture the image with a camera embedded in the smartphone according to different users. This paper proposes the Check4Urine system, a novel smartphone-based portable urine-analysis tester and provides three techniques to improve such a performance degradation problem robust to various test environments and disturbances, which are the compensation algorithm to correct the varying illumination effect, an urine strip detection algorithm robust to edge loss of the object image, and the color decision algorithm based on the pre-processed reference table. Experimental results show that the proposed Check4Urine system increases the accuracy of urine-analysis by 20-50% at various test conditions, compared with the existing image-processing based mobile urine tester.
In hospitals, nurses are subjectively determining the urine status to check the kidneys and circulatory system of patients whose statuses are related to patients with kidney disease, critically ill patients, and nursing homes before and after surgery. To improve this problem, this paper proposes a urine spectrum analysis system which clusters urine test results based on a hybrid machine learning model consists of unsupervised learning and supervised learning. The proposed system clusters the spectral data using unsupervised learning in the first part, and classifies them using supervised learning in the second part. The results of the proposed urine spectrum analysis system using a mixed model are evaluated with the results of pure supervised learning. This paper is expected to provide better services than existing medical services to patients by solving the shortage of nurses, shortening of examination time, and subjective evaluation in hospitals.
Jun, K. R.;Lee, S. J.;Choi, B. C.;An, S. H.;Ha, K.;Kim, J. Y.;Kim, J. H.
Journal of Biomedical Engineering Research
/
v.19
no.5
/
pp.477-486
/
1998
In this paper, we implemented the urine analysis system capable of measuring a qualitative and semi-quantitative and assay using strip. The analysis algorithm of urine analysis was adopted a fuzzy logic-based classifiers that was robust to external error factors such as temperature and electric power noises. The spectroscopic properties of 9 pads In a strip were studied to developing the urine analysis system was designed for robustnesss and stability. The urine analysis system was consisted of hardware and software. The hardware of the urine analysis system was based on one-chip microprocessor, and Its peripherals which composed of optic modulo, tray control, preamplifier, communication with PC, thermal printer and operating status indicator. The software of the urine analysis system was composed of system program and classification program. The system program did duty fort system control, data acquisition and data analysis. The classification program was composed of fuzzy inference engine and membership function generator. The membership function generator made triangular membership functions by statical method for quality control. Resulted data was transferred through serial cable to PC. The transferred data was arranged and saved be data acquisition program coded by C+ + language. The precision of urine analysis system and the stability of fuzzy classifier were evaluated by testing the standard urine samples. Experimental results showed a good stability states and a exact classification.
Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.7
/
pp.1319-1325
/
2006
Urine analysis is basic test in clinical medicine using visual examination by expert nurse. Recently, this test is measured by automatic urine analysis system. But, this system has different results by each instrument. So, a new classification algorithm is required for accurate classify and urine color collection. In this paper, a intelligent color classifier of urine analysis system was designed using neural network algorithm. The input parameters are three stimulus(RGB) after preprocessing using normalization. The fuzzy inference and neural network ware constructed for classify class according to 9 urine test items and $3{\sim}7$ classes. The experiment material to be used a standard sample of medicine. The possibility to adapt classifier designed for urine analysis system was verified as classifying measured standard samples and observing classified result. Of many test items, experimental results showed a satisfactory agreement with test results of reference system.
Urine glucose monitoring system is a self-monitoring system that display the glucose level by non-invasive measurement method. In this paper, We developed a noninvasive urine glucose monitoring system that improved defects of urine glucose measurement with a colorimeter method and invasive blood glucose measurement method. This system consist of bio-chemical sensor for urine glucose measurements, signal detecting part, digital and signal analysis part, display part and power supplying part. The developed bio-chemical sensor for the measurement of urine glucose has good reproducibility, convenience of handing and can be mass-produced with cheap price. To evaluate the performance of the developed system, We performed the evaluation of confidence about the detection of glucose level by a comparison between a standard instrument in measuring glucose level and the developed system using standard glucose solutions mixed with urine. Standard error was 2.85282 from the evaluation of confidence based on regression analysis. Also, In analysis of S.D(standard deviation) and C.V(coefficient of validation) that are important parameters to evaluate system using bio-chemical sensor, S.D was 10% which falls under clinically valid value, 15%, and C.V was under 5%. Consequently from the above results, compared to blood glucose measurement, the system performance is satisfactory.
A transformation methode of the chromaticity coordinates was proposed to calibrate the measured data obtained by a urine analysis system which implemented in our previous study. Generally. the reacted color of a reagent strip by urine analysis system often exhibit the color distortions due to nonlinear characteristics of the various devices that is the optic module mechanism. hardware, and surround circumstance. A color correction method for minimizing the color distortion play a few role in maintaining high accuracy and reproduction of the urine analysis system. In this work, we used the compensation method such as the shading correction, the characteristic curve extraction of RGB color by means of third order spline interpolation, and linear transformation using a reference color. In addition, 1931 CIE XYZ color space was used to compensate the color of the measured data by a standard reference system as colorimeter. A compensation matrix was obtained so that the output values of the urine analysis system is nearly equal to that of a standard reference system for identical color sample. Color correction obtained by a urine analysis system which implemented in our previous study exhibited a good color accuracy when it was compared with the reference data. Observed result from an experiments on ten items or a urinalysis strip that color difference or between two urine analysis system was 1.28.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.10
/
pp.1394-1397
/
2020
The urine test used as a basic test method of in vitro diagnosis for health care has been used for a long time to be simple and convenient. The urine test method is using a color that appears depending on the change in the ion concentration that reacts over time buried in the standard color test paper(Strips) with a urine sample applied to some reaction reagents. In this paper, it was proposed a neural network algorithm to obtain a suitable and reproducibility and accuracy classifier suitable for the urine analysis system. The experimental results were compared with the visual colorimetric analysis, and the neural network algorithm showed better results.
In this paper, we suggested and made a classifier or qualitative and quantitative analysis in urine analysis system. Input variable number and fuzzy membership function was made from determination of standard sample, and the fuzzy rules were determined by the analysis of spectroscopic properties of pads in strip. Fuzzy classifier used in urine analysis system was evaluated or the standard samples in each items and degrees. Negative and positive response of urine test was classified in good property, but detail classification or quantitative analysis had 8% maximum error in each items. If fuzzy membership unction and generation of rule are supplemented, suggested fuzzy classifier can be applied to the clinical test.
In this paper, we analyzed the spectroscopic properties of strip to analyzer urine qualitatively & quantitatively and make urine analyzer system stable by spectroscopy, and research the property of preamplifier unit. The analysis of spectroscopic properties of 10 pads in the strip is used for determine the wave length of light source of optic detector unit and used for basic materials which are necessary that we develop the algorithm analyzing the density grade of pad accurately. We make preamplifier unit by using the current to frequency method to measure the distribution of pad color. We implemented urine analyzer system. This system's hardware is composed of measuring unit for detect of distribution density of strip pad, main processing unit, communication unit, interface device, thermal printer, and indicator. The software consists of the program which manage the argument of test, proportion initial value of urine analyzer and calibrate analyzed result.
In this paper, a classifier of urine analysis system was designed using preprocessing and fuzzy algorithm. Preprocessing were processed by normalizing data of strip using calibration curve composed of achromatic colors value and by calculating three stimulus. FUZZY classifier capable of analyzing a qualitative concentration of test items was composed of fuzzifier by gaussian shaped membership function, inference of MIN method, and defuzzifier of centroid method through verification by measuring standard solution and by classifying concentration classes. After tuning membership function according to relating standard solution with urinalysis sample, the possibility to adapt classifier designed for urine analysis system near a bed was verified as classifying measured urinalysis samples and observing classified result. Of all test items, experimental results showed a satisfactory agreement with test results of reference system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.