• Title/Summary/Keyword: Urine analysis

Search Result 773, Processing Time 0.026 seconds

Multivariate Analysis of Predictive Factors for the Severity in Stable Patients with Severe Injury Mechanism (중증 손상 기전의 안정된 환자에서 중증도 예측 인자들에 대한 다변량 분석)

  • Lee, Jae Young;Lee, Chang Jae;Lee, Hyoung Ju;Chung, Tae Nyoung;Kim, Eui Chung;Choi, Sung Wook;Kim, Ok Jun;Cho, Yun Kyung
    • Journal of Trauma and Injury
    • /
    • v.25 no.2
    • /
    • pp.49-56
    • /
    • 2012
  • Purpose: For determining the prognosis of critically injured patients, transporting patients to medical facilities capable of providing proper assessment and management, running rapid assessment and making rapid decisions, and providing aggressive resuscitation is vital. Considering the high mortality and morbidity rates in critically injured patients, various studies have been conducted in efforts to reduce those rates. However, studies related to diagnostic factors for predicting severity in critically injured patients are still lacking. Furthermore, patients showing stable vital signs and alert mental status, who are injured via a severe trauma mechanism, may be at a risk of not receiving rapid assessment and management. Thus, this study investigates diagnostic factors, including physical examination and laboratory results, that may help predict severity in trauma patients injured via a severe trauma mechanism, but showing stable vital signs. Methods: From March 2010 to December 2011, all trauma patients who fit into a diagnostic category that activated a major trauma team in CHA Bundang Medical Center were analyzed retrospectively. The retrospective analysis was based on prospective medical records completed at the time of arrival in the emergency department and on sequential laboratory test results. PASW statistics 18(SPSS Inc., Chicago, IL, USA) was used for the statistical analysis. Patients with relatively stable vital signs and alert mental status were selected based on a revised trauma score of more than 7 points. The final diagnosis of major trauma was made based on an injury severity score of greater than 16 points. Diagnostic variables include systolic blood pressure and respiratory rate, glasgow coma scale, initial result from focused abdominal sonography for trauma, and laboratory results from blood tests and urine analyses. To confirm the true significance of the measured values, we applied the Kolmogorov-Smirnov one sample test and the Shapiro-Wilk test. When significance was confirmed, the Student's t-test was used for comparison; when significance was not confirmed, the Mann-Whitney u-test was used. The results of focused abdominal sonography for trauma (FAST) and factors of urine analysis were analyzed using the Chi-square test or Fisher's exact test. Variables with statistical significance were selected as prognostics factors, and they were analyzed using a multivariate logistics regression model. Results: A total of 269 patients activated the major trauma team. Excluding 91 patients who scored a revised trauma score of less than 7 points, 178 patients were subdivided by injury severity score to determine the final major trauma patients. Twenty-one(21) patients from 106 major trauma patients and 9 patients from 72 minor trauma patients were also excluded due to missing medical records or untested blood and urine analysis. The investigated variables with p-values less than 0.05 include the glasgow coma scale, respiratory rate, white blood cell count (WBC), serum AST and ALT, serum creatinine, blood in spot urine, and protein in spot urine. These variables could, thus, be prognostic factors in major trauma patients. A multivariate logistics regression analysis on those 8 variables showed the respiratory rate (p=0.034), WBC (p=0.005) and blood in spot urine (p=0.041) to be independent prognostic factors for predicting the clinical course of major trauma patients. Conclusion: In trauma patients injured via a severe trauma mechanism, but showing stable vital signs and alert mental status, the respiratory rate, WBC count and blood in the urine can be used as predictable factors for severity. Using those laboratory results, rapid assessment of major trauma patients may shorten the time to diagnosis and the time for management.

An Improved Laser-Induced Fluorimetry for Assay of Uranium in Urine (레이저 유발형광법을 이용한 우라늄 작업자의 뇨 형광 분석)

  • Lee, Sang-Mok;Shin, Jang-Soo;Kim, Cheol-Jung
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.255-258
    • /
    • 1993
  • A method for analysis of trace uranium in urine sample was studied using a time-resolved $N_2$-laser-induced fluorimetry. The Fluran solution was found to be efficient to mask the chloride ions which are known to quench uranium fluorescence in the fluorimetric assay of uranium in urine. This improved method made the sample preparation much simpler than other conventional ones. The fluorescence intensities at 1% urine mixture with 10% Fluran aqueous solution showed good linearities in the concentration range of 10-500 ppb(before dilution).

  • PDF

Diagnostic Method for Inborn Metabolic Disorders using differentiation between D- and R- Isomers on GC-MS (D체와 R체 이성질체 판별과 GC-MS를 이용한 유전성 대사이상질환의 진단법 개발)

  • Yoon, Hye-Ran
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.2
    • /
    • pp.65-71
    • /
    • 2015
  • Since the secretion of specific chiral isomers in urine (or plasma) is very crucial to diagnose some inborn metabolic disorders, clinical application of dual column achiral differential method has been performed for the absolute configuration of chiral compounds. Extracted from the acidified urine with diethyl ether, carboxylic functional group of organic acid (stereoisomers of the volatile) was derivatized with (-)-menthylation or (S)-(+)-3-methyl-2-butylation and followed by O-trifluoroacylation. Each of the enantiomers was accurately separated from the library matched double column (achiral) with a retention index (I). In various inborn metabolic disease urines, absolute chirality was identified correctly in the urine (10 patients) with inborn metabolic disease (including secretion of D, L- lactic acid, D, L-3-hydroxybutyric acid, and D, L-2-hydroxyglutaric acid). In this study, we identified and isolated the volatile diastereomer as a useful diagnostic marker, this successful application to urine specimens may be useful for diagnostic classification of inherited metabolic disorders.

The Effects of Massage on Stress Hormone in Premature Infants (피부 마사지가 미숙아의 스트레스 호르몬에 미치는 효과)

  • Yoo Kyung-Hee
    • Child Health Nursing Research
    • /
    • v.11 no.1
    • /
    • pp.125-131
    • /
    • 2005
  • Purpose: This study was done to evaluate the effects of massage on the level of stress hormone in the urine in preterm infants. Method: The design was a nonequivalent control group pretest-posttest design quasi experimental study. Fifty-eight preterm infants were assigned to the experimental(31) or control group(27). The data were collected from March 2002 to August 2003. The massage stimulation was provided to infants in the experimental group for 15-minutes twice a day for 10 days. On day 1 and day 10 of the study, a 24 hour-urine sample was collected for norepinephrine, epinephrine, and cortisol assays. In data analysis, SPSSWIN 10.0 program was utilized for descriptive statistics, ANOVA and t-test. Results: General characteristics of the two groups showed no significant differences, thus the two groups were found to be homogenous. The 24 hour-urine cortisol of the massage group (t=4.61, p=.000) was significantly reduced compared to the control group after 10 days. Conclusions: The results suggest that the massage stimulation can be used to reduce 24 hour-urine cortisol in preterm infants. Therefore, massage provided in the incubator is recommended for reduction of stress in preterm infants who are hospitalized in neonatal intensive care units.

  • PDF

Heavy Metal as Risk Factor of Cardiovascular Disease - An Analysis of Blood Lead and Urinary Mercury (심혈관계 질환 위험요인으로서의 중금속 - 납과 수은에 대한 분석 -)

  • Kim, Dae-Seon;Yu, Seung-Do;Cha, Jung-Hoon;Ahn, Seung-Chul;Lee, Eun-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.4
    • /
    • pp.401-407
    • /
    • 2005
  • Objectives : We wanted to investigate the relationship between heavy metal, especially lead and mercury, to the blood pressure and cholesterol level in children. Methods : This study was undertaken in three primary schools and the study subjects were a total of 274 children. The lead in the blood and the urine mercury were analyzed by performing atomic absorption spectroscopy. Results : All of participants' blood lead levels and urine mercury concentrations were below the suggested level of concern according to the criteria of the CDC and ATSDR. We found no significant correlation between lead, mercury and the blood pressure. The blood lead level did not show any relationship with the blood pressure and cholesterol. However, the urine mercury levels were associated with the serum cholesterol. Conclusion : Our study suggests that mercury can induce an increase of cholesterol as a risk factor of myocardial infraction and coronary/cardiovascular disease.

Development of Analytical Techniques for Human Serum and Urine by Using Glow Discharge (글로우 방전을 이용한 혈청과 뇨의 분석기술 개발)

  • Lee, Sang Chun;Choi, Kyung-Soo;Son, Eun-Ho;Sim, Young-Jin
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.167-173
    • /
    • 1998
  • An electrothermal vaporization-hollow cathode glow discharge-atomic emission spectrometer(ETV-HCGD-AES) has been developed for detecting heavy metals in human serum and urine samples. Fisrt of all, we designed a glow discharge cell for atomic emission spectrometry and its analytical performance was studied with the standard reference materials(SRMs) purchased from the NIST. Practically, the ETV-HCGD-AES demonstrated better instrumental sensitivity and selectivity for detecting Hg and Pb in the SRMs, serum and urine, than ICP-OES since the ETV-HCGD-AES was not required the complicate sample digestion procedure, which improved sample transportation efficiency.

  • PDF

Determination of pseudoephodrine, dextromethorphan and their metabolites in human urine by gas chromatography - mass spectrometry (GC/MS를 이용한 소변 중 Pseudoephedrine과 Dexrormethorphan 및 대사체의 동시분석)

  • Lee, Won Woong;Ahn, Sung-Ho;Lee, Sung-Woo;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.315-322
    • /
    • 2007
  • This study has been described the metabolism and excretion in a healthy male urine collected for 24 hr after oral administration of a complex (pseudoephedrine and dextromethorphan). To detect the trace amounts of parent drugs and their metabolites, acid-hydrolyzed urine was extracted and derivatized with MSTFA and MBTFA followed by gas chromatography/mass spectrometric analysis. Two parent drugs and their metabolites were tentatively identified as their derivatives based on the mass spectral interpretation and compared with previous reports. In addition, the time profile of urinary excretion rate for parent drugs and metabolites was studied. On the basis of metabolites identified and excretion rate, the metabolic pathways of both drugs are suggested.

Variations of Catecholamine Contents in Rat Urine by Environmental Stress (환경 Stress에 의한 횐쥐뇨중 catecholamine의 변화)

  • 김형석
    • Environmental Analysis Health and Toxicology
    • /
    • v.3 no.3_4
    • /
    • pp.9-15
    • /
    • 1988
  • The word of stress crime from Latin language as stringere and it was used in medical fields from 1935. According to Selye, all the biological bodies reveal physilolgical changes when some stimulation exceed normal levels, and consequently the pituitary gland and adrenal systems are activated. Jacob expressed that stress is the loss of homeostasis by physical, chemical, and emotional stimulation. When biological organisms receive extreme stress the amount of catecholamine excretion are increase. Author investigated the catecholamine contents in rat urine after giving the low temperature stress, noise stress, and water immersion stress. The 24 hours rat urine was collected by adding 1 ml 6 N-HCl and the sample is passed through Bio-Rex 70 samples treatment column to extract catecholamine and detected the catecholamine with HPLC-fluorescence detetor. The highest epinephrine concentration was 67.14 ng in water immersion stress condition and the dopamine concentration of 221.37 ng was shown in the low temperature stress condition.

  • PDF

SCREENING OF BENZODIAZEPINES IN URINE BY THE IMMUNOASSAY AND QUANTITATION BY GC-NPD METHOD

  • Park, Jongsei;Park, Jeongeum;Park, Myung-Ja
    • Toxicological Research
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 1991
  • We developed a simple method to determine benzodiazepines in biological samples using electron capature detectors and nitrogen-phosphorous detectors. The extraction of 13 benezodiazepines in urine at pH 9.5 with toluene and its analysis in GC/NPD showed the peaks in 9-16 min. In this retention time range, the biological backaground was fairly low and the drugs could be identified in low concentrations. The benzodiazepines in urine samples were screened by the fluorescence polarization immunoassay and positive samples were confirmed by the GC/NPD method.

  • PDF

Diagnostic Ex-Vivo Assay of glucose Using Diabetic-Control Circuits

  • Ly, Suw Young;Lee, Chang Hyun;Yoo, Hai-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.724-730
    • /
    • 2015
  • For ex-vivo diabetic control, the voltammetric diagnosis of glucose (GU) was conducted with a modified carbon nanotube paste electrode, using handheld analytical circuits. The optimum analytical conditions were attained within the 0.5-4.0 ug/L working range and at the 0.06 ug/L detection limit, which system was interfaced to the feedback circuits and was applied to human urine for diabetic-patient diagnosis. It can be used for ex-vivo flow control analysis, vascular flow detection and other medicinal assays. The equations of the patients' urine are y=36.65x+12.13 and $R^2=0.987$, those of the healthy person of y= 2.5x+10.9 and $R^2=0.928$ (patients: 118 ug/L; healthy person: 12.34 ug/L).