• Title/Summary/Keyword: Urinary arsenic

Search Result 19, Processing Time 0.036 seconds

Urinary Arsenic Concentrations and their Associated Factors in Korean Adults

  • Bae, Hye-Sun;Ryu, Doug-Young;Choi, Byung-Sun;Park, Jung-Duck
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • Arsenic (As) is a well-known human carcinogen and its dietary exposure has been found to be the major route of entry into general population. This study was performed to assess the body levels of As and their associated factors in Korean adults by analyzing total As in urine. Urine and blood samples were collected from 580 adults aged 20 years and older, who had not been exposed to As occupationally. Demographic information was collected with the help of a standard questionnaire, including age, smoking, alcohol intake, job profiles, and diet consumed in the last 24 hrs of the study. Total As, sum of As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), in urine was determined using atomic absorption spectrometer involving hydride generation method. The geometric mean concentration of total As in urine was $7.10{\mu}g/L$. Urine As was significantly higher in men ($7.63{\mu}g/L$) than in women ($6.75{\mu}g/L$). Age, smoking, alcohol consumption, and job profiles of study subjects did not significantly affect the concentration of As in urine. No significant relationship was observed between body mass index (BMI), Fe, and total cholesterol in serum and urinary As. Urine As level was positively correlated with seaweeds, fishes & shellfishes, and grain intake. A negative correlation between urinary As level and HDL-cholesterol in serum and meat intake was observed. Overall, these results suggest that urinary As concentration could be affected by seafood consumption. Therefore, people who frequently consume seafood and grain need to be monitored for chronic dietary As exposure.

Arsenite-induced Hepatotoxicity in Chang Liver and Clone 9 Cells

  • Yum, Young-Na;Ahn, Jin-Hong;Kim, Gi-Dae;Hwang, Myung-Sil;Kim, Sheen-Hee;Lim, Chul-Joo;Yang, Ki-Hwa;Kim, Dae-Kyung;Cho, Dae-Hyun
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.56-56
    • /
    • 2003
  • The reactivity and toxicity of arsenic compounds depend on the their oxidative states. Exposure to arsenic causes many human health effects, including cardiovascular, hepatic and renal disease, in addition to cancer in kidney, liver, lung, urinary bladder and skin. The cytotoxic effects of arsenite on normal hepatocyte, which most of its biotranfomation takes place. (omitted)

  • PDF

A Comparison of the Adjustment Methods for Assessing Urinary Concentrations of Cadmium and Arsenic: Creatinine vs. Specific Gravity (요중 카드뮴과 비소의 보정방법 비교 : 요중 크레아티닌과 요비중)

  • Kim, Dong-Kyeong;Song, Ji-Won;Park, Jung-Duck;Choi, Byung-Sun
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.6
    • /
    • pp.450-459
    • /
    • 2011
  • Objectives: Biomarkers in urine are important in assessing exposures to environmental or occupational chemicals and for evaluateing renal function by exposure from these chemicals. Spot urine samples are needed to adjust the concentration of these biomarkers for variations in urine dilution. This study was conducted to evaluate the suitability of adjusting the urinary concentration of cadmium (uCd) and arsenic (uAs) by specific gravity (SG) and urine creatinine (uCr). Methods: We measured the concentrations of blood cadmium (bCd), uCd, uAs, uCr, SG and N-acetyl-${\beta}$-D-glucosaminidase (NAG) activity, which is a sensitive marker of tubular damage by low dose Cd exposure, in spot urine samples collected from 536 individuals. The value of uCd, uAs and NAG were adjusted by SG and uCr. Results: The uCr levels were affected by gender (p < 0.01) and muscle mass (p < 0.01), while SG levels were affected by gender (p < 0.05). Unadjusted uCd and uAs were correlated with SG (uCd: r = 0.365, p < 0.01; uAs: r = 0.488, p < 0.01), uCr (uCd: r = 0.399, p < 0.01; uAs: r = 0.484, p < 0.01). uCd and uAs adjusted by SG were still correlated with SG (uCd: r = 0.360, p < 0.01, uAs: r = 0.483, p < 0.01). uCd and uAs adjusted by uCr and modified uCr ($M_{Cr}$) led to a significant negative correlation with uCr (uCd: r = -0.367, p < 0.01; uAs: r = -0.319, p < 0.01) and $M_{Cr}$ (uCd: r = -0.292, p < 0.01; uAs: r = -0.206, p < 0.01). However, uCd and uAs adjusted by conventional SG ($C_{SG}$) were disappeared from these urinary dilution effects (uCd: r = -0.081; uAs: r = 0.077). Conclusions: $C_{SG}$ adjustment appears to be more appropriate for variations in cadmium and arsenic in spot urine.

Thallium poisoning: a case report

  • Oscar Jimenez;Hector Caceres;Luis Gimenez;Luciana Soto;Micaela Montenegro;Jhon Alexander Avila Rueda
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.3
    • /
    • pp.311-314
    • /
    • 2023
  • Thallium poisoning is usually accidental. We present a case of a 51-year-old woman who was evaluated in June 2018 for myalgia, vertigo, asthenia, and abdominal pain. Physical examination revealed temporal-spatial disorientation, jaundice, and asterixis. The laboratory reported the following: bilirubin, 10.3 mg/dL; aspartate transaminase, 78 U/L; alanine transaminase, 194 U/L; albumin, 2.3 g/dL; prothrombin time, 40%; and platelet count, 60,000/mm3. Serology performed for hepatitis A, B, and C; Epstein-Barr virus; cytomegalovirus; and human immunodeficiency virus was negative, and a collagenogram was negative. Physical reevaluation revealed alopecia on the scalp, armpits, and eyebrows; macules on the face; plantar hyperkeratosis; and ulcers on the lower limbs. Tests for lead, arsenic, copper, and mercury were carried out, which were normal; however, elevated urinary thallium (540 ㎍/g; range, 0.4-10 ㎍/g) was observed. The patient was treated with D-penicillamine 1,000 mg/day and recovered her urinary thallium levels were within normal range at annual follow-up. Thallium poisoning is extremely rare and can be fatal in small doses. An adequate clinical approach can facilitate early diagnosis.

A Study on Concentrations of Heavy Metal in Blood and Urine of Local Area in Korea (국내 일부 지역주민의 혈액과 요중 중금속 농도에 관한 연구)

  • Im, Ji-Young;Chung, Eun-Kyung;Park, Hee-Jin;Yu, Seungdo;Jang, Bong-Ki;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.59-72
    • /
    • 2013
  • The purpose of this study is to assess the effects of heavy metal concentrations in the blood and urine of the general population. This research had been conducted from April to December 2008, studying 545 residents of Daejeon and Chungcheong Province. Through the concentrations of heavy metals(Pb, Cd, Hg, As, Mn) in the biota samples and questionnaires, the residents heavy metal exposure level and the influential factors according to personal characteristics or lifestyle were evaluated. As to the heavy metal concentration in the blood and urine of the comparing region, were As and Mn statistically significant(p<0.01, p<0.05). Blood lead and urinary mercury concentrations were higher in males than females. The heavy metal concentration for each age group increased blood mercury. The concentration of all heavy metals were higher in the drinkers than in the non-drinkers. Blood lead and mercury concentrations were higher in the smokers than in the non-smokers, but the urinary cadmium, arsenic and blood manganese was higher in the non-smokers than in the smokers. As to the blood lead and urinary cadmium concentration according to the food preference fish showed high concentration. To clarify the factors affecting the heavy metal concentration in biota among subjects multiple regression analysis was conducted. As a results, it turned out that as to lead content in blood, sex, age and smoking have influence on the subjects with explanatory adequacy of 14.0 %. These results demonstrated that the factors affected the concentrations of heavy metals in blood and urine. The results of this study could be used as the foundational data for setting the health risk assessment.

The Association between HbA1c and the Biological Exposure Index for Heavy Metals in Community (지역사회 주민의 당화혈색소와 중금속 생체표지자와의 관련성)

  • Min, Young-Sun;Lee, Kwan
    • Journal of agricultural medicine and community health
    • /
    • v.47 no.3
    • /
    • pp.181-188
    • /
    • 2022
  • Objectives: The prevalence of diabetes mellitus was approximately 16% in populations of over age 30 years, and deaths from diabetes mellitus became the sixth most prevalent cause of death by disease. To assess the relationship between HbA1c and heavy metal level in blood and urine, targeted residents were evaluated in a vast steel industrial complex. Methods: We selected 414 subjects for analysis after applying the following exclusion criterion: 18 persons with diabetes mellitus. They took part in a questionnaire survey and underwent blood and urinary assessments. HbA1c and lead (Pb) level were measured in blood and, cadmium (Cd), inorganic arsenic (iAs) and mercury (Hg) were evaluated in urine. Two subgroups were divided by HbA1c 6.5%. Each subgroup was divided by 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th and 90th percentile levels of biological exposure index of the heavy metals for logistic regression. Results: Odd ratios have a tendency to increase as they go from the 90th to the 10th percentile of cadmium. However, lead, arsenic and mercury did not have significant relationships with HbA1c. In correction of age, region, gender and smoking history, a higher distribution in the subgroup with cadmium above 0.8318 ㎍/g creatinine (30th percentile) was demonstrated in the subgroup with HbA1c levels above the 6.5%, with an odds ratio of 5.26 (95% C.I. ; 1.44~19.17). Conclusion: This study found a significant correlation between urinary levels of cadmium and HbA1c in correction of several factors. It is meaningful that this outcome may be used as a basis for a study to establish the acceptable limit of urinary cadmium in Korea.

Evaluation of the Relationship between the Exposure Level to Mixed Hazardous Heavy Metals and Health Effects Using Factor Analysis (요인분석을 이용한 유해 중금속 복합 노출수준과 건강영향과의 관련성 평가)

  • Kim, Eunseop;Moon, Sun-In;Yim, Dong-Hyuk;Choi, Byung-Sun;Park, Jung-Duck;Eom, Sang-Yong;Kim, Yong-Dae;Kim, Heon
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.4
    • /
    • pp.236-243
    • /
    • 2022
  • Background: In the case of multiple exposures to different types of heavy metals, such as the conditions faced by residents living near a smelter, it would be preferable to group hazardous substances with similar characteristics rather than individually related substances and evaluate the effects of each group on the human body. Objectives: The purpose of this study is to evaluate the utility of factor analysis in the assessment of health effects caused by exposure to two or more hazardous substances with similar characteristics, such as in the case of residents living near a smelter. Methods: Heavy metal concentration data for 572 people living in the vicinity of the Janghang smelter area were grouped based on several subfactors according to their characteristics using factor analysis. Using these factor scores as an independent variable, multiple regression analysis was performed on health effect markers. Results: Through factor analysis, three subfactors were extracted. Factor 1 contained copper and zinc in serum and revealed a common characteristic of the enzyme co-factor in the human body. Factor 2 involved urinary cadmium and arsenic, which are harmful metals related to kidney damage. Factor 3 encompassed blood mercury and lead, which are classified as related to cardiovascular disease. As a result of multiple linear regression analysis, it was found that using the factor index derived through factor analysis as an independent variable is more advantageous in assessing the relevance to health effects than when analyzing the two heavy metals by including them in a single regression model. Conclusions: The results of this study suggest that regression analysis linked with factor analysis is a good alternative in that it can simultaneously identify the effects of heavy metals with similar properties while overcoming multicollinearity that may occur in environmental epidemiologic studies on exposure to various types of heavy metals.