• Title/Summary/Keyword: Urea-N

Search Result 798, Processing Time 0.035 seconds

Effect of Molasses or Rice Gruel Inclusion to Urea Supplemented Rice Straw on Its Intake, Nutrient Digestibilities, Microbial N Yield, N Balance and Growth Rate of Native (Bas indicus) Growing Bulls

  • Chowdhury, S.A.;Huque, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.2
    • /
    • pp.145-151
    • /
    • 1998
  • The possibility of using rice gruel compared to that of the cane molasses as a source of readily fermentable energy for a urea supplemented straw diet has been studied. Twelve native growing bulls of $237{\pm}8.7kg $ live weight and months old were randomly allocated to three treatments fed solely rice straw enriched with : (1) 3% urea (US), (2) 3% urea + 15% molasses (UMS) and (3) 3% urea + 30% rice gruel (UGS). The feeding trial continued for sixty days. Organic matter (OM) intake was significantly (p < 0.05) higher in the UMS ( $64g/kg\;W^{0.75}/d$) followed by UGS ($53g/kg\;W^{0.75}/d$) and US ($49g/kg\;W^{0.75}/d$). Estimated (from digestible OM intake) metabolizable energy (ME) intake were 396, 348 and $301kJ/kg\;W^{0.75}/d$ for UMS, UGS and US respectively. The maintenance (i.e., no change in live weight) ME intake calculated to be $308{\pm}7.4kJ/kg\;W^{0.75}/d$. Urinary purine derivatives excretion was nonsignificantly higher in the UMS (51.73 mmol/d), followed by UGS (42.53 mmol/d) and US (35.26 mmol/d). The estimated microbial N (MN) yield were 21.10, 14.00 and 11.60 g/d for UMS, UGS and US respectively. For each MJ increase in ME intade, MN yield increased by $1.29{\pm}0.134g$. Observed live weight changes during the experimental period were 292, 125 and -19 g/d respectively for UMS, UGS and US. It was concluded that supplementation of readily fermentable N (urea) alone was not enough to optimize the rumen function and a source of readily fermentable energy was required. Rice gruel was less effective than molasses as fermentable energy source to remove a restriction on voluntary intake and provide less amino acids of microbial origin for absorption from the small intestine, Thus more substrate for protein synthesis and gluconeogenesis were available for growth in the molasses than the rice gruel supplemented animals. However, in situation where molasses is not available or costly, rice gruel does appear to have a place as readily fermentable energy source on a urea supplemented straw diet.

Effects of Combining Feed Grade Urea and a Slow-release Urea Product on Characteristics of Digestion, Microbial Protein Synthesis and Digestible Energy in Steers Fed Diets with Different Starch:ADF Ratios

  • Lopez-Soto, M.A.;Rivera-Mendez, C.R.;Aguilar-Hernandez, J.A.;Barreras, A.;Calderon-Cortes, J.F.;Plascencia, A.;Davila-Ramos, H.;Estrada-Angulo, A.;Valdes-Garcia, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.187-193
    • /
    • 2014
  • As a result of the cost of grains, the replacement of grains by co-products (i.e. DDGS) in feedlot diets is a common practice. This change produces diets that contain a lower amount of starch and greater amount of fibre. Hypothetically, combining feed grade urea (U) with slow release urea (Optigen) in this type of diet should elicit a better synchrony between starch (high-rate of digestion) and fibre (low-rate of digestion) promoting a better microbial protein synthesis and ruminal digestion with increasing the digestible energy of the diet. Four cannulated Holstein steers ($213{\pm}4$ kg) were used in a $4{\times}4$ Latin square design to examine the combination of Optigen and U in a finishing diet containing different starch:acid detergent fibre ratios (S:F) on the characteristics of digestive function. Three S:F ratios (3.0, 4.5, and 6.0) were tested using a combination of U (0.80%) and Optigen (1.0%). Additionally, a treatment of 4.5 S:F ratio with urea (0.80% in ration) as the sole source of non-protein nitrogen was used to compare the effect of urea combination at same S:F ratio. The S:F ratio of the diet was manipulated by replacing the corn grain by dried distillers grain with solubles and roughage. Urea combination did not affect ruminal pH. The S:F ratio did not affect ruminal pH at 0 and 2 h post-feeding but, at 4 and 6 h, the ruminal pH decreased as the S:F ratio increased (linear, p<0.05). Ruminal digestion of OM, starch and feed N were not affected by urea combination or S:F ratio. The urea combination did not affect ADF ruminal digestion. ADF ruminal digestion decreased linearly (p = 0.02) as the S:F ratio increased. Compared to the urea treatment (p<0.05) and within the urea combination treatment (quadratic, p<0.01), the flow of microbial nitrogen (MN) to the small intestine and ruminal microbial efficiency were greater for the urea combination at a S:F ratio of 4.5. Irrespective of the S:F ratio, the urea combination improved (2.8%, p = 0.02) postruminal N digestion. As S:F ratio increased, OM digestion increased, but ADF total tract digestion decreased. The combination of urea at 4.5 S:F improved (2%, p = 0.04) the digestible energy (DE) more than expected. Combining urea and Optigen resulted in positive effects on the MN flow and DE of the diet, but apparently these advantages are observed only when there is a certain proportion of starch:ADF in the diet.

Effect of Nitrification Inhibition on Soil Phosphate Release and Nutrient Absorption and Growth of Rice Plant (질산화작용 억제 처리가 논토양의 인산 가용화와 벼의 양분흡수 및 생육에 미치는 영향)

  • Chung, Jong-Bae;Kim, Byoung-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.336-342
    • /
    • 2010
  • In a pot experiment, we studied the effect of nitrification inhibition on Fe reduction and P release in paddy soil and growth and nutrient uptake of rice plant. Recommended level of fertilizers, 6 kg N, 5 kg $P_2O_5$ and 4 kg $K_2O$ per 10a, were applied, and for N fertilizer urea, urea+N-serve, and $KNO_3$ were included. Four 30-day-old seedlings were transplanted in a waterlogged 9 L pot filled with Yuga series soil, and 3 pots were prepared in each N fertilizer treatment. Changes of soil redox potential and concentration of ${NH_4}^-$, ${NO_3}^-$, $Fe^{2+}$ and ${PO_4}^{3-}$ in soil solution at 10 cm depth were monitored, and also the growth and nutrient uptake of rice plants were measured. Concentration of ${NH_4}^+$ in soil solution was highest in urea+N-serve treatment, and followed by urea and $KNO_3$ treatments. Addition of N-serve could effectively inhibit nitrification in the soil. In the treatment of $KNO_3$, relatively higher ${NO_3}^-$ concentration was found at 10 cm depth soil. In urea+N-serve treatment redox potential was lower than -100 mV during the experiment, but in the treatment of $KNO_3$ the potential was maintained above 0 mV until ${NO_3}^-$ remaining in soil solution. Reduction of Fe(III) and solubilization of P were highly correlated with redox potential changes in the three N fertilizer treatments. Concentrations of Fe(II) and ${PO_4}^{3-}$ in soil solution at 10 cm depth were much higher in the urea+N-serve treatment. The most vigorous rice seedling growth was found in the urea treatment. Although the availability of N and P in soil was enhanced in the urea+N-serve treatment through the suppression of nitrification, excessive solubilization of Fe could limit the growth of rice plants.

EFFECTS OF UREA NITROGEN ON THE METABOLISM OF PLANTS(IV) On the Changes of Simple Sugar Content in Plants Treated with Nitrogen

  • 김준호
    • Journal of Plant Biology
    • /
    • v.7 no.1
    • /
    • pp.11-14
    • /
    • 1964
  • Change of the amount of carbohydrates in relations with nitrogen metabolism was studied under the different manners of supply and with different sources of nitrogen. In barley plant supplied with nitrogen through root, the depression periods of glucose and sucrose content occurred at 2 days after, but the amounts of both sugars were different with the different sources of nitrogen; there were in sequence diminished by treatment of NO3, NH4 and urea. In sunflower leaves sprayed with urea both sugar contents were inversely related to the urea concentration sprayed, and depressing periods of the sugars appeared immediately in the N-deficient plant but late in the N-abundant one.

  • PDF

INTRACELLULAR AMINO ACID PROFILE OF RUMEN BACTERIA AS INFLUENCED BY UREA FEEDING AND ITS DURATION

  • Kobayashi, Y.;Wakita, M.;Hoshino, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.4
    • /
    • pp.619-622
    • /
    • 1993
  • Rumen bacterial amino acids in sheep on urea diet were monitored to assess a possible change in amino acid synthesis as a long term response to high rumen ammonia environment. A sheep was fed a semipurified diet with soybean meal, followed by a diet with urea as a main nitrogen source. Mixed rumen bacteria were harvested from ruminal fluid taken 3 h after feeding (twice in soybean meal feeding and 6 times in urea feeding) and fractionated as cell wall, proteins and protein-free cell supernatant of monitor amino acids in each fraction. Ruminal ammonia concentration at the sampling ranged from 5.7 to 39.5 mgN/dl. Cell wall and protein fractions of mixed rumen bacteria were stable in their amino acid composition regardless of nitrogen sources of diet and the feeding duration. However, protein-free cell supernatant fraction showed a higher alanine proportion with urea feeding (18.6 and 28.2 molar % of alanine for samples from sheep fed soybean meal and urea, respectively) and its duration (20.6 and 32.9 molar % for samples from sheep on urea diet for 1 and 65 days, respectively). Total free amino acid level of bacteria was depressed in the initial period of urea feeding but restored on 65th day of the feeding. These results suggest that an alanine synthesizing system may develop in rumen bacteria as urea feeding becomes longer.

Quantification of urea in serum by isotope dilution HPLC/MS (동위원소 희석 HPLC/MS에 의한 혈청 내 urea의 정량)

  • Lee, Hwashim;Park, Sangryoul
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.271-277
    • /
    • 2005
  • Urea in blood has been measured as an effective marker for diagnosis of renal function. Urea which is e end-product of nitrogen containing metabolites such as proteins is filtered through glomeruli of kidneys and then excreted as urine. If the renal function is deteriorated, the urea concentration in blood will be increased, from which the healthiness of renal function is judged. In order to improve the confidence of diagnosis results, the results must keep traceability chain to certified reference materials, which was certified by primary reference method. In this study, we proposed isotope dilution-liquid chromatography/mass spectrometry (ID-LC/MS) as a candidate primary method, in which $15^N_2$-urea is used as an internal reference material. The developed method is highly accurate in principle and is convenient as it does not require cumbersome derivatization. 0.1 mmol/L ammonium chloride was selected as a mobile phase for HPLC because it provided low interference in MS analysis of relatively low molecular weighted urea. HPLC and MS were connected with an electrospray ionization (ESI) interface of positive mode, which provided high sensitivity and reproducibility. The developed method was validated with internationally recognized reference materials, and we have obtained satisfactory results in an international ring trial. The expanded uncertainty calculated according to ISO guide was 1.8% at 95% confidence interval. The developed method is being used as a primary reference measurement method such as for certification of serum certified reference materials (CRMs).

RENAL REGULATION OF UREA EXCRETION IN SWAMP BUFFALO FED WITH HIGH PROTEIN SUPPLEMENTATION

  • Chaiyabutr, N.;Chanpongsang, S.;Loypetjra, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.3
    • /
    • pp.275-280
    • /
    • 1995
  • The effect of supplemented high protein diet intake on renal urea regulation in swamp buffalo was carried out in the present experiment Five swamp buffalo heifers weighing between 208-284 kg were used for this study. The animals were fed with a supplementary high protein diet and renal function and kinetic parameters for urea excretion were measured. This was compared to a control period where the same animals had been fed only with paragrass and water hyacinth. For 2 months the same animals were fed a mixed of paragrass, water hyacinth plus 2 kgs of a high protein supplement (protein 18.2% DM basis) per head per day. In comparison to the control period, there were no differences in the rate of urine flow, glomerular filtration rate (GFR), effective renal plasma flow (ERPF), plasma urea concentration and filtered urea. In animals supplemented with high protein intake mean values of urea clearance, excretion rate and the urea urine/plasma concentration ratio markedly increased (p < 0.05) while renal urea reabsorption significantly decreased from 40% to 26% of the quantity filtered. In this same study group urea space distribution and urea pool size increased which coincided with an increase in plasma volume (p < 0.05). Plasma protein decreased while plasma osmolarity increased (p < 0.05). Both urea turnover rate and biological half-life of $^{14}C$-urea were not affected by a supplementary high protein intake. The results suggest that animals supplemented with high protein diets are in a state of dynamic equilibrium of urea which is well balanced between urea excreted into the urine and the amount synthesized. The limitation for renal tubular urea reabsorption would be a change in extra-renal factors with an elevation of the total pool size of nitrogenous substance.

Effects of Nitrogen Sources in the Fermentation of Petroleum Hydrocarbon (石油炭化水素醱酵에 있어서의 窒素源의 影響)

  • Tai Won Park;Kim, Tae Yeong;Hui Young Yun
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.224-228
    • /
    • 1973
  • In the fermentation for preparation of petroprotein by Rhodotorula sp. in $C_{12}{\sim}C_{14}$n-alkane mixture it was investigated how the effects due to the difference of chemical form of the nitrogen sources are, that is, how the inorganic nitrogen sources such as nitrates and ammonium salts and organic nitrogen source such as urea effect on the view of fermentation time and yield and how the ratios of nitrogen to carbon with $NaNo_3$ effect. Then following results were obtained: the time required to maximum growth, when $NaNo_3$ or $(NH_4)_2SO_4$ was used as nitrogen source, was 40 hrs. and 45 hrs., respectively, but when urea was used, it was 66 hrs. much longer than above nitrogen sources. On the view of yield, however, in use of the both inorganic sources, when the yield is represented as consumption of 0.1 N-NaOH, it was 0.36 and 0.38 ml, respectively, but, in the case of urea, it amounted to 0.78 ml. In the effect of the ratios of nitrogen to carbon in medium, when n-alkane mixture was added in 1 % (vol.) and N/C with $NaNo_3$ was 0.2 the best results were obtained and generally the higher the value of the ratio the better growth effects were shown.

  • PDF

Acidification of pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and perennial ryegrass regrowth as estimated by 15N-urea flux

  • Park, Sang Hyun;Lee, Bok Rye;Jung, Kwang Hwa;Kim, Tae Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.457-466
    • /
    • 2018
  • Objective: The present study aimed to assess the nitrogen (N) use efficiency of acidified pig slurry for regrowth yield and its environmental impacts on perennial ryegrass swards. Methods: The pH of digested pig slurry was adjusted to 5.0 or 7.0 by the addition of sulfuric acid and untreated as a control. The pig slurry urea of each treatment was labeled with $^{15}N$ urea and applied at a rate of 200 kg N/ha immediately after cutting. Soil and herbage samples were collected at 7, 14, and 56 d of regrowth. The flux of pig slurry-N to regrowth yield and soil N mineralization were analyzed, and N losses via $NH_3$, $N_2O$ emission and $NO_3{^-}$ leaching were also estimated. Results: The pH level of the applied slurry did not have a significant effect on herbage yield or N content of herbage at the end of regrowth, whereas the amount of N derived from pig slurry urea (NdfSU) was higher in both herbage and soils in pH-controlled plots. The $NH_4{^+}-N$ content and the amount of N derived from slurry urea into soil $NH_4{^+}$ fraction ($NdfSU-NH_4{^+}$) was significantly higher in in the pH 5 plot, whereas $NO_3{^-}$ and $NdfSU-NO_3{^-}$ were lower than in control plots over the entire regrowth period. Nitrification of $NH_4{^+}-N$ was delayed in soil amended with acidified slurry. Compared to non-pH-controlled pig slurry (i.e. control plots), application of acidified slurry reduced $NH_3$ emissions by 78.1%, $N_2O$ emissions by 78.9% and $NO_3{^-}$ leaching by 17.81% over the course of the experiment. Conclusion: Our results suggest that pig slurry acidification may represent an effective means of minimizing hazardous environmental impacts without depressing regrowth yield.

Studies on the amino acid metabolism of young rice root (Part 3) - Effects of nitrogen, phosphorus, potassium and respiratory inhibitor on the enzyme activities of rice root - (수도근(水稻根)의 Amino산(酸) 대사(代謝)에 관한 연구 -제(第) 3 보(報) 수도근(水稻根)의 몇가지 효소(酵素)의 활성(活性)에 미치는 삼요소(三要素)및 호흡저해제(呼吸沮害劑)의 영향(影響))

  • Kim, Young Ung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.4
    • /
    • pp.201-207
    • /
    • 1974
  • Some effects of nitrogen, phosphorus, potassium and respiratory inhibitor on growth of rice plant and activity of GOT, GPT and peroxidase for the rice root were investigated. Obtained results were summarized as follows: 1. Growth of rice root and plant applied with $NO_3$-N in culture solution was generally increased in the length and weight compared with that of $NH_4$-N plot. On the other hand, the GOT, GPT and peroxidase activity was more increased in the $NH_4$-N plot than in the $NO_3$-N plot. 2. Oxidative power of ${\alpha}$-naphthylamine in rice root was stronger in the $NO_3$-N plot than in the $NH_4$-N plot. 3. When rice plant was cultured in the medium which did not supplied nitrogen, phosphorus or potassium, respectively, GOT activity was more decreased than GPT activity, while peroxidase activity was increased mostly in the potassium-free plot. 4. When rice plant was cultivated in the culture solution added respiratory inhibitor, NaF, plant height was shortened in the order of nitrogen-free > $NH_4$-H > urea-N > $NO_3$-N plot, and GOT and GPT activity was also decreased in the order of nitrogen-free > $NH_4$-N > urea-N > $NO_3$-N plot.

  • PDF