• Title/Summary/Keyword: Urea Supplement

Search Result 92, Processing Time 0.024 seconds

Effect of Synchronizing Starch Sources and Protein (NPN) in the Rumen on Feed Intake, Rumen Microbial Fermentation, Nutrient Utilization and Performance of Lactating Dairy Cows

  • Chanjula, P.;Wanapat, M.;Wachirapakorn, C.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1400-1410
    • /
    • 2004
  • Eight crossbred (75% Holstein Friesian) cows in mid-lactation were randomly assigned to a switchback design with a 2x2 factorial arrangement to evaluate two nonstructural carbohydrate (NSC) sources (corn meal and cassava chips) with different rumen degradability and used at two levels of NSC (55 vs. 75%) with protein source (supplied by urea in the concentrate mix). The treatments were 1) Low degradable low level of corn (55%) 2) Low degradable high level of corn (75%) 3) High degradable low level of cassava (55%) and 4) High degradable high level of cassava (75%). The cows were offered the treatment concentrate at a ratio to milk yield at 1:2. Urea-treated rice straw was offered ad libitum as the roughage and supplement with 1 kg/hd/d cassava hay. The results revealed that total DM intake, BW and digestion coefficients of DM were not affected by either level or source of energy. Rumen fermentation parameters; NH3-N, blood urea nitrogen and milk urea nitrogen were unaffected by source of energy, but were dramatically increased by level of NSC. Rumen microorganism populations were not affected (p>0.05) by source of energy, but fungal zoospores were greater for cassava-based concentrate than corn-based concentrate. Milk production and milk composition were not affected significantly by diets containing either source or level of NSC, however concentrate than corn-based concentrate averaging (4.4 and 4.2, respectively). Likewise, income over feed, as estimated from 3.5% FCM, was higher on cassava-based concentrate than corn-based concentrate averaging (54.0 and 51.4 US$/mo, respectively). These results indicate that feeding diets containing either cassava-based diets and/or a higher of oncentrates up to 75% of DM with NPN (supplied by urea up to 4.5% of DM) can be used in dairy rations without altering rumen ecology or animal performance compared with corn-based concentrate.

Effects of Polyurethane Coated Urea Supplement on In vitro Ruminal Fermentation, Ammonia Release Dynamics and Lactating Performance of Holstein Dairy Cows Fed a Steam-flaked Corn-based Diet

  • Xin, H.S.;Schaefer, D.M.;Liu, Q.P.;Axe, D.E.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.491-500
    • /
    • 2010
  • Three experiments were conducted to investigate the effects of polyurethane coated urea on in vitro ruminal fermentation, ammonia release dynamics and lactating performance of Holstein dairy cows fed a steam-flaked corn-based diet. In Exp. 1, a dual-flow continuous culture was run to investigate the effect of polyurethane coated urea on nutrient digestibility, rumen fermentation parameters and microbial efficiency. Three treatment diets with isonitrogenous contents (13.0% CP) were prepared: i) feedgrade urea (FGU) diet; ii) polyurethane coated urea (PCU) diet; and iii) isolated soy protein (ISP) diet. Each of the diets consisted of 40% steam-flaked corn meal, 58.5% forages and 1.5% different sources of nitrogen. PCU and FGU diets had significantly lower digestibility of NDF and ADF (p<0.01) than the ISP diet. Nitrogen source had no significant effect (p = 0.62) on CP digestibility. The microbial efficiency (expressed as grams of microbial N/kg organic matter truly digested (OMTD)) in vitro of the PCU diet (13.0 g N/kg OMTD) was significantly higher than the FGU diet (11.3 g N/kg OMTD), but comparable with the ISP diet (14.7 g N/kg OMTD). Exp. 2, an in vitro ruminal fermentation experiment, was conducted to determine the ammonia release dynamics during an 8 h ruminal fermentation. Three treatment diets were based on steam-flaked corn diets commonly fed to lactating cows in China, in which FGU, PCU or soybean meal (SBM) was added to provide 10% of total dietary N. In vitro $NH_3-N$ concentrations were lower (p<0.05) for the PCU diet than the FGU diet, but similar to that for the SBM diet at all time points. In Exp. 3, a lactation trial was performed using 24 lactating Holstein cows to compare the lactating performance and blood urea nitrogen (BUN) concentrations when cows were fed PCU, FGU and SBM diets. Cows consuming the PCU diet had approximately 12.8% more (p = 0.02) dietary dry matter intake than those consuming the FGU diet. Cows fed the PCU diet had higher milk protein content (3.16% vs. 2.94%) and lower milk urea nitrogen (MUN) concentration (13.0 mg/dl vs. 14.4 mg/dl) than those fed the FGU diet. Blood urea nitrogen (BUN) concentration was significantly lower for cows fed the PCU (16.7 mg/dl) and SBM (16.4 mg/dl) diets than the FGU (18.7 mg/dl) diet. Cows fed the PCU diet had less surplus ruminal N than those fed the FGU diet and produced a comparable lactation performance to the SBM diet, suggesting that polyurethane coated urea can partially substitute soybean meal in the dairy cow diet without impairing lactation performance.

Effects of Dietary Heat Extruded Soybean Meal and Protected Fat Supplement on the Production, Blood and Ruminal Characteristics of Holstein Cows

  • Chen, Kuen-Jaw;Jan, Der-Fang;Chiou, Peter Wen-Shyg;Yang, Der-Wei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.821-827
    • /
    • 2002
  • The purpose of this study was to evaluate the effect of protected fat and heat-extruded soybean meal on the lactation performance of Holstein cows. Twenty-four cows, consisting of 20 lactating cows and 4 rumen-fistulated dry cows, were randomly allocated into four groups with 5 lactating cows and 1 fistulated cow in each group. A replicated 4${\times}$4 Latin square design with four 21 day periods, including 14 days of adaptation and 7 collection days within each period was employed. The experiment was a 2${\times}$2 arrangement, with or without heat-extruded soybean meal and protected fat inclusion. The dietary treatments consisted of supplements of (a) soybean meal (the control), (b) heat-extruded soybean meal, (c) protected fat, and (d) heat-extruded soybean meal and protected fat. The results showed that there were no significant differences in feed intake, milk yield, milk protein content, milk lactose content and body weight change between the dietary treatments. However, cows supplemented with protected fat showed a significantly increased (p<0.05) milk fat yield, 3.5% FCM and total solid yield. The increase in undegradable intake protein (UIP) via heat extruded soybean meal supplement significantly decreased the urea nitrogen concentration in the blood (p<0.05). Dietary fat inclusion significantly increased the blood cholesterol concentration (p<0.01) and decreased the ruminal pH value (p<0.01). Increased dietary UIP significantly decreased the ammonia nitrogen concentration in the rumen (p<0.01), but did not significantly influence the pH and VFA molar percentage in the rumen. It appears that dietary protected fat inclusion could improve milk fat and solid content. Increased dietary undegradable intake protein through heat extruded soybean meal did not improve milk yield. But it could alleviate the adverse effect of decreased milk protein due to dietary fat supplementation. Increased UIP could also decrease the ammonia nitrogen concentration in the rumen and plasma urea nitrogen concentration in the blood.

Effect of Levels of Sodium DL-malate Supplementation on Ruminal Fermentation Efficiency of Concentrates Containing High Levels of Cassava Chip in Dairy Steers

  • Khampa, S.;Wanapat, Metha;Wachirapakorn, C.;Nontaso, N.;Wattiaux, M.A.;Rowlison, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.368-375
    • /
    • 2006
  • Four rumen-fistulated dairy steers were randomly assigned according to a $4{\times}4$ Latin square design to investigate effects of supplementation levels of sodium dl-malate in concentrates on rumen ecology, ruminal fermentation, nitrogen balance, feed intake and digestibility of nutrients and ruminal microbial protein synthesis. The dietary treatments were cassava concentrate-based, containing sodium dl-malate supplementation at 0, 9, 18 and 27 g/hd/d with urea-treated rice straw (UTS) fed ad libitum. The experiment was conducted for four periods, each period lasting 21 days. Ruminal pH increased with incremental addition of malate (p<0.05). Additionally, molar proportions of propionate were higher in supplemented groups and was highest at 18 g/hd/d of malate supplement (p<0.05). Microbial protein synthesis tended to be higher in dairy steers receiving sodium dl-malate supplements and also was the highest at 18 g/hd/d. Variable bacterial populations, such as amylolytic, proteolytic and cellulolytic species were increased (p<0.05). Furthermore, protozoal populations were decreased significantly (p<0.05), while fungal zoospores were dramatically increased in dairy steers receiving sodium dl-malate supplement (p<0.05). These results suggested that supplementation of concentrate containing a high level of cassava chip at 18 g/hd/d with UTS in dairy steers could improve rumen fermentation efficiency and rumen microbial protein synthesis.

Effect of Feeding Bypass Protein with Urea Treated Jowar Kadbi (Sorghum Straw) on Performance of Cross Bred (HF × DEONI) Calve

  • Kalbande, V.H.;Chainpure, A.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.651-654
    • /
    • 2001
  • A study was made of the efficiency of ammonia N retention by Jowar kadbi (sorghum straw), initially 6.41% crude protein (CP), treated with 4% urea solution. After 30 days the CP in straw that was unchaffed and had been left uncovered was 10.02, and in chaffed straw that had been covered with a polythene sheet was 10.9%. The two treated straws were each fed to six crossbred (HF$\times$Deoni) calves, initially $12{\pm}2$ months old and $86.7{\pm}3.2kg$ bodyweight. They were also given two isocaloric (70% TDN) and isonitrogenous (20% CP) concentrate mixtures differing in calculated Rumen Degradable to Undegradable Dietary Protein ratio (RDP:UDP). Those fed the unchaffed uncovered treated straw (treatment C) received 65 RDP:35UDP and the other group (T1) received concentrate with a 55:45 ratio. The T1 group had the higher DM intake (p<0.01) in total (306 vs 268 kg), per day (4.1 vs 3.6 kg) and per unit bodyweight. Digestibility of DM, OM, CP and NDF, but not ADF, was higher in T1 and that group had the higher daily gain (517 vs 333 g) and higher total gain (38.8 vs 25.0 kg) over the 75 d of the feeding trial. It is concluded that chaffing and covering of Jowar kadbi treated with urea, not likely to be adopted by farmers because of financial constraints, does not confer important benefits. A concentrate supplement (estimated 45% of the CP as UDP) to calves given the treated straw has a beneficial effect on their growth and development.

Effect of Intraruminal Sucrose Infusion on Volatile Fatty Acid Production and Microbial Protein Synthesis in Sheep

  • Kim, K.H.;Lee, S.S.;Kim, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.350-353
    • /
    • 2005
  • Effects of sucrose supplement on the pattern of VFA production and microbial protein synthesis in the rumen were examined in sheep consuming basal diet of grass silage (2.5 kg fresh wt/d) that was provided in 24 equal meals each day by an automatic feeder. Four mature wethers were allocated to four experimental treatments in a 4${\times}$4 Latin square design with periods lasting 14 days. The treatments were (1) the basal diet, (2) supplemented with 150 g sucrose and 7.0 g urea, (3) 300 g sucrose and 13 g urea, and (4) 450 g sucrose and 20 g urea given as a continuous intraruminal infusion for 24 h. All infusions were given in 2 litres of aqueous solution per day using a peristaltic pump. The effect of sucrose level on rumen mean pH was significantly linear (p<0.01). There were not significant differences in the concentration of ammonia-N, total VFA and the molar proportions of acetate, propionate and butyrate with the level of sucrose infusion. The molar proportions of isobutyric acid (p<0.05) and isovaleric acid (p<0.001) were significantly reduced when the infused amount of sucrose was increased. The flow of microbial N was linearly (p<0.001) increased with sucrose and urea level. High levels of readily fermentable carbohydrate in a ration reduced the efficiency of microbial protein synthesis in the rumen. It was demonstrated that of the individual fatty acids, only the molar proportion of isovalerate showed a significant negative correlation (R2=$0.3501^{**}$) with the amount of microbial N produced and a significant positive correlation (R2=$0.2735^{**}$) with the efficiency of microbial growth.

Evaluation of Fishmeal Supplement with Net Nitrogen Flux by the Portal-drained Viscera and the Liver in Mature Sheep

  • Fukuma, T.;Taniguchi, K.;Obitsu, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1255-1261
    • /
    • 2005
  • The objective of this study was to evaluate the net flux response of nitrogen compounds (alpha-amino N, ammonia N, urea N, essential amino acids) across the portal-drained viscera (PDV), liver and total splanchnic tissues of mature wethers to increasing level of dietary fishmeal (FM) supplementation. Four wethers (average body weight, 64 kg) with chronic indwelling catheters into the portal, hepatic and mesenteric veins and the abdominal aorta were used in a 4${\times}$4 Latin square design. A basal diet consisting of 0.7 hay and 0.3 concentrate was fed twice daily with a fixed amount at 1.4 times maintenance energy (1.3 kg/day on a dry matter basis). The supplementation proportion of FM as treatment was 0, 0.03, 0.06 and 0.09 to the amount of the basal diet to contain 119, 137, 154 and 170 g crude protein per kg dietary dry matter, respectively. Blood flows through PDV and liver did not differ (p>0.05) among the treatments. Both net PDV release and hepatic uptake of alpha amino acid N increased linearly (p<0.05) in response to increased dietary FM, which resulted in similar total splanchnic release of alpha-amino N among the treatments. Similarly, increased dietary FM increased net PDV absorption and hepatic removal of ammonia N linearly (p<0.05). Hepatic synthesis and total splanchnic release of urea N increased linearly (p<0.01) with increased dietary FM, but PDV uptake of urea N did not respond to increased dietary FM. Linear regression equations between the increases in FM N intake and PDV net flux indicated that 0.34 and 0.30 of FM N was absorbed in the form of alpha-amino N and ammonia N, respectively. The results demonstrated that FM supplementation provides more alpha-amino N than ammonia N to the liver, but the alpha-amino acid N absorption is less than the expected metabolizable protein N from FM supplementation.

Effects of Cassava Leaf Meal on the Rumen Environment of Local Yellow Cattle Fed Urea-Treated Paddy Straw

  • Khang, D.N.;Wiktorsson, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1102-1108
    • /
    • 2000
  • An experiment was conducted as a Latin square design with four rumen fistulated local yellow cattle with a mean live weight of 230 kg. The treatments were: $(CLM_0)$ urea-treated rice straw ad libitum plus 1 kg cassava root meal (basal diet), $(CLM_{500})$ basal diet plus 500 g cassava leaf meal, $(CLM_{1000})$ basal diet plus 1,000 g cassava leaf meal, and $(CLM_{1500})$ basal diet plus 1,500 g cassava leaf meal. The results showed that there were differences in dry matter intake of urea-treated rice straw between treatments (p<0.05). The highest total dry matter intake was observed for treatment $CLM_{1500}$, with 2.62 kg DM/100 kg LWt/day, followed by treatments $CLM_{1000}$, $CLM_{500}$ and $CLM_0$, with 2.42, 2.00 and 1.86 kg DM/100 kg LWt/day, respectively. The ruminal ammonia concentration on treatment $CLM_{1500}$ was greater than on treatments $CLM_{1000}$, $CLM_{500}$ and $CLM_0$. There were non-significant differences in the ruminal pH among the treatments. The in sacco degradability of cassava leaf meal and cassava root meal was high, and on average 75 and 85% respectively of the DM had disappeared after 24 h of incubation. Degradation rate of urea treated rice straw was 64% after 72 h of incubation.

Effects of Sunflower Oil Supplementation in Cassava Hay Based-diets for Lactating Dairy Cows

  • Chantaprasarn, N.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.42-50
    • /
    • 2008
  • Twenty-four, lactating dairy cows were randomly assigned according to a Rrandomized complete block design (RCBD) to investigate the effect of sunflower oil supplementation (SFOS) with cassava hay based-diets on feed intake, digestibility of nutrients, rumen fermentation efficiency and milk production. The treatments were as follows: T1 = Control, using commercial concentrate as a supplement (CON); T2 = Concentrate with cassava hay (CHSO-0); T3 = Concentrate with cassava hay and 2.5% sunflower oil (CHSO-2.5); T4 = Concentrate with cassava hay and 5% sunflower oil (CHSO-5). The cows were offered concentrate feed at a ratio of concentrate to milk production of 1:2 and urea-treated rice straw was fed ad libitum. The results revealed that feed intake, digestibility of nutrients and ruminal pH were similar among all treatments, while ruminal NH3-N was lower (p<0.05) with SFOS. Blood urea-N (BUN) and milk urea-N (MUN) were not significantly affected by SFOS. The ruminal concentrations of volatile fatty acids were significantly different among the treatments. Sunflower oil supplementation significantly increased concentrations of unsaturated fatty acids, and ratio of unsaturated to saturated fatty acids in the milk, particularly the conjugated fatty acids, was significantly enhanced. Furthermore, production costs of treatments with sunflower oil supplementation were lower than for the control. Based on this study, SFOS in cassava hay based-diets improves rumen ecology, milk yield and milk quality, especially in terms of conjugated linoleic acids.

Amount of Cassava Powder Fed as a Supplement Affects Feed Intake and Live Weight Gain in Laisind Cattle in Vietnam

  • Ba, Nguyen Xuan;Van, Nguyen Huu;Ngoan, Le Duc;Leddin, Clare M.;Doyle, Peter T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.8
    • /
    • pp.1143-1150
    • /
    • 2008
  • An experiment was conducted in Vietnam to test the hypothesis that supplementation with cassava powder up to 2% of live weight (LW)/d (DM basis) would linearly increase digestible organic matter intake and LW gain of Laisind cattle. There were five treatments: a basal diet of elephant grass fed at 1.25% of LW and rice straw fed ad libitum or this diet supplemented with cassava powder, containing 2% urea, at about 0.3, 0.7, 1.3 or 2.0% LW. The cattle fed cassava powder at about 2.0% LW did not consume all of the supplement, with actual intake similar to the 1.3% LW treatment. Organic matter, digestible organic matter and digestible energy intakes increased (p<0.001) curvilinearly with increased consumption of cassava powder. Rice straw intake declined curvilinearly with increasing intake of cassava powder (p<0.001), and there was a small linear decline (p = 0.01) in grass intake. The substitution rate of cassava powder for forage was between 0.5 and 0.7 kg DM reduction in forage intake per kg DM supplement consumed, with no difference between treatments. Apparent digestibility of organic matter increased (p<0.001) in a curvilinear manner, while digestibility of neutral detergent fibre declined (p<0.001) in a curvilinear manner with increased consumption of cassava powder. Live weight gain increased (p<0.01) linearly with increased consumption of supplement. It was concluded that the amount of cassava powder fed should be limited to between 0.7 and 1.0% LW.