• Title/Summary/Keyword: Urea Nitrogen

검색결과 1,324건 처리시간 0.021초

DEVELOPMENT OF STRAW BASED RATION FOR FEEDING RUMINANTS

  • Kibria, S.S.;Islam, M.R.;Saha, C.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제4권3호
    • /
    • pp.235-240
    • /
    • 1991
  • A CRD experiment with thirty growing cross bred calves were assigned at random to three treatments rations. 1) $T_0$, 0% Urea + 20% M. O. cake, 2) $T_1$, 1% Urea + 10% M. O. cake and 3) $T_2$, 2% Urea + 0% M. O. cake to develop a rice straw based ration for ruminants. Sweetish odour and yellowish colour were observed in good recovered silage. Organic matter varied from 87.45% to 89.63% whereas crude protein varied from 14.0% to 14.5% in each treatment. No significant differences were found among the nutrient composition of the ration. The dry matter in take (DMI) and dry matter digestibility was higher in $T_0$ (0% Urea) than those of ration containing 1% ($T_1$) and 2% Urea ($T_2$). The organic matter digestibility decreases with increasing doses of urea. The crude protein & nitrogen-free-extract digestibility were found higher in the ration $T_1$ containing 1% urea whereas crude fibre digestibility and available metabolizable energy (ME) were higher in $T_0$ containing no urea as compared to $T_1$ and $T_2$. Total digestible nutrient (TDN) decreases with the increase of urea level. The highest feed efficiency was found in $T_0$ having no urea and lowest was in $T_2$. The animals gained in weights from each ration. Highest gain in weight was found in $T_0$ ration, then followed $T_1$, and $T_2$. This is due to natural protein available in M. O. cake only. It is concluded that supplemetation of urea or M. O. cake with readily available energy source as molasses upto 20% of total dietary dry matter in a complete ration may increase the intake of low quality fibrous roughage only when nitrogen and mineral are not limiting factor.

Nitrogen Fixation and In Situ Dry Matter and Fibre Constituents Disappearance of Wheat Straw Treated with Urea and Boric Acid in Murrah Buffaloes

  • Dass, R.S.;Mehra, U.R.;Verma, A.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권8호
    • /
    • pp.1133-1136
    • /
    • 2000
  • Wheat straw was treated with 4 per cent urea at a moisture level of 50 per cent alongwith different levels of boric acid viz. 1, 2, 3 and 4 per cent, under laboratory conditions to know the impact of boric acid on ammonia-N fixation in the straw. Murrah buffaloes were used for determining the disappearance of dry matter, CP and fibre constituents by nylon bag technique. Ammoniation increased CP content of wheat straw, which increased further due to addition of boric acid. Low level of boric acid (1%) had no adverse effect on fibre constituents disappearance but at higher levels there was a depressioon in the disappearance of fibre coonstituents. It can be concluded that low level of boric acid was sufficient to trap the excess ammonia released during urea ammoniation of wheat straw without affecting other constituents and their disappearance in the rumen of buffaloes.

人工湖 生産層에서 植物플랑크톤의 질소화합물 동화속도 (In situ Assimilation Rate of Nitrogenous Compounds by Phytoplankton in the Euphotic Layer of Reservoirs)

  • Mitamura,Osamu;Kyu-Song Cho;Sa-Uk Hong
    • The Korean Journal of Ecology
    • /
    • 제16권3호
    • /
    • pp.261-273
    • /
    • 1993
  • The nitrogen assimilation rate of nitrogenous nutrients by reservior phytoplankton was masured in the in situ condition in the euphotic layer of Lakes Soyang, Chuncheon and Uiam located on the upper reaches of the North Han River System in August, 1983, Korea. The assimilation rate of ammonia, nitrate and urea nitrogen in surface water was 13, 2 and $13{\mu}g$ at. $N{\cdot}m^{-3}{\cdot}(12:10~18:15)^{-1}$ in Lake Soyang, 325, 27 and $59{\mu}g$ at. $N{\cdot}m^{-3}{\cdot}(12:30~18:30)^{-1}$ in Lake Chuncheon, and 174, 12 and $45{\mu}g$ at. $N{\cdot}m^{-3}{\cdot}(12:30~19:30)^{-1}$ in Lake Uiam. Ammonia and urea were perferntially utilized by reservoir phytoplankton. The dark/light ratios of nitrate assimilation were much lower than those of ammonia and urea assimilation of nitrate showed little contribution. The primary productuin was estimated as 59mg $C{\cdot}m^{-2}{\cdot}day^{-1}$ and 6.9mg $N{\cdot}m^{-2}{\cdot}day^{-1}$ in Lake Spyang, 217mg C{\cdot}m^{-2}{\cdot}day^{-1}$ and 26mg N{\cdot}m^{-2}{\cdot}day^{-1}$ in Lake Chuncheon, and 110mg C{\cdot}m^{-2}{\cdot}day^{-1}$ and 13mg N{\cdot}m^{-2}{\cdot}day^{-1}$ in Lake Uiam, with production ratios of 8.6, 8.4 and 8,4, respectively. The turnover time o ammonia and urea in the upper euphotic layer was 2 to 47 days and 4 to 38 days, respectively. Nitrate required much longer periods. In the euphotic layer of reservoirs, ammonia and urea played signigicant roles in the biogeoKDICical nitrogen metabolism.

  • PDF

질소 및 가리 급원이 들잔디(Zoysia japonica Steud.)의 생육 및 품질에 미치는 영향 (Effects of Nitrogen and Potassium Sources on the Growth and Quality of Zoysia japonica Steud.)

  • 황규성;이용범;한동욱
    • 아시안잔디학회지
    • /
    • 제5권1호
    • /
    • pp.1-10
    • /
    • 1991
  • The purpose of the experiment was to determine the effect of nitrogen sources (urea, ammonium sulphate, ammonium nitrate) and potassium sources (potassium chloride, potassium sulphate) on the growth and quality of Zoysia japonica Steud. This experiment was conducted at Seoul City University turf field from 1988 to 1989. The results of this experiment were summarized as follows; 1. Urea and Ammonium sulphate resulted in superior clipping yield compared to ammonium nitrate. The growth of rhizome and stolon increased significantly with urea forms, but ammonium sulphate treated plots exhibited the highest the growth rate of root. 2. Ammonium sulphate showed best turf color rating while ammonium nitrate resulted in the poorest. Prolongation of the green period showed longer in ammonium sulphate and urea treated plots than ammoium nitrate. 3. Urea and ammonium sulphate exhibited superior visible quality and shoot density compared to ammonium nitrate. 4. The uptake of mineral nutrient showed the highest concentration with urea plots. Surface soil pH was allowed to become slightly acid with the ammonium sulphate and potassium sulphate treatments, while the application of N and K sources did not cause significant differences in mineral element content in soil.

  • PDF

Effect of Forms and Levels of Nitrogen Fertilizer on Plant Growth and Essential Oil Content of Agastache rugosa

  • Ohk, Hyun-Choong;Song, Ji-Sook;Chae, Young-Am
    • 한국작물학회지
    • /
    • 제45권2호
    • /
    • pp.128-133
    • /
    • 2000
  • This study was carried out to investigate the effect of forms and levels of nitrogen fertilizer on plant growth and essential oil production of Agastache rugosa. Calcium nitrate had more influenced on length and width of leaves and lateral branch length than did urea. When nitrogen fertilizer level was increased from 12 kgN/I0a to 24kgN/I0a, plant growth was stimulated and dry matter of leaf and inflorescence were increased. Top dry matter of plant with calcium nitrate treatment (38.4 g) was heavier than that of urea treatment (32.8 g). Interactions among accession and nitrogen form and nitrogen rate were not significantly different for top dry matter. The forms and rate of nitrogen fertilizer did not affect estragole content. The estragole contents was higher in leaf (91.8%) than that of inflorescence (81.3%). While the essential oil content was not affected by different nitrogen forms, nitrogen level affected the essential oil contents positively by increasing dry matter. Essential oil yield was not affected by accession or nitrogen form, but by nitrogen rate. With increasing N application from 12kgN/I0a to 24 kgN/I0a, essential oil yield was increased by 95.8 %.

  • PDF

생분해성 코팅 요소 종류별 질소 용출 및 온실가스 발생량에 미치는 영향 (Effects of biodegradable polymer coating urea to nitrogen release in the soil column)

  • 최재이;신중두;조현종;정우진;이상범;윤석인
    • 유기물자원화
    • /
    • 제32권1호
    • /
    • pp.49-59
    • /
    • 2024
  • 생분해성 중합체 코팅 요소는 질소 용출을 제어하면서, 질소이용 효율을 극대화하며 농업생태계의 비점오염원을 줄여주는 역할을 한다. 따라서 본 연구의 목적은 생분해성 중합체 혼합물을 이용한 코팅 요소의 용출 패턴과 온실가스 배출량을 구명하는 것이었다. 처리내용은 속효성 비료인 요소를 대조구, 난분해성 코팅 요소(NBCF), 생분해 완효성 코팅 요소(NB60)와 생분해성 완효성 코팅 요소(MDS)를 토양에 혼합한 4가지 수준으로 구성하였다. 침출수에 대한 최대 총 질소 누적 농도는 NBCF가 NB60보다 33% 높았으며, NB60이 NBCF 보다 최대 용출 기간은 10일 지연되는 것으로 나타났다. 누적 총 질소 및 NO3-N의 용출 패턴에서 NB60과 NBCF는 일차 직선형태로 동일하였지만, 대조구와 MDS는 Sigmoid curves 형태로 누적 용출 농도는 MDS가 대조구보다 높게 나타났다. 생분해성 코팅 요소의 온실가스 발생량을 살펴보면, CH4의 발생량은 대조구 대비 NBCF, NB60, MDS 각각 0.38%, 11.36%, 5.91% 증가하였고, 또한 N2O의 발생량은 대조구 대비 각각 50.5%, 32.4%, 58.8% 증가하는 것으로 나타났다. 따라서 생분해 완효성 코팅 요소는 비료 이용성을 감안하여 포장에 시용할 경우 비료 시용량뿐만 아니라 농업생태계 비점 오염원을 줄일 수 있을 것으로 판단된다.

Urea Transformation and Nitrogen Loss in Waterlogged Soil Column

  • Seol, Su-Il;Lee, Sang-Mo;Han, Gwang-Hyun;Choi, Woo-Jung;Yoo, Sun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • 제43권2호
    • /
    • pp.86-93
    • /
    • 2000
  • An experiment was conducted to obtain the quantitative data on the transformation and loss of applied urea-N in waterlogged soil columns. The soil columns were pre-incubated for 35 days to develop oxidized and reduced soil conditions prior to urea application. After urea application at the rate of $150kg\;N\;ha^{-1}$(29.5 mg N), the amounts of nitrogen which were volatilized, leached, and remained in soil column were measured during 38 days of incubation period. On 2 and 4 days of incubation, 54.1%(15.9 mg N) and 98.4%(29.0mg N) of the applied urea was hydrolyzed, respectively. Most of the applied urea was completely hydrolyzed within 6 days. After urea application, the rates of ammonia volatilization were increased with the floodwater pH when the floodwater pH were higher than 7.0. The maximum rate of ammonia volatilization was $0.3mg\;d^{-1}$ when pH of the floodwater showed maximum value of 7.6. The total amount of volatilized nitrogen was 6.1% (1.8mg N) of the applied urea-N. A 63.2 % (18.6mg N) of the applied urea was remained in soil as $NH_4{^+}-N$ and 28.0% (8.2mg N) of the applied urea was leached as $NH_4{^+}-N$ at the end of the incubation. Amount of $NO_3{^-}-N$ in soil was smaller than 2.0 mg throughout the incubation period. The total amount of $NO_3{^-}-N$ leached was very small, which value was 1.8 mg. It suggested that nitrification process was not significant in waterlogged soil column of this study due to high infiltration rate of urea solution applied to the soil column. Therefore only small amount of $NO_3{^-}-N$ was lost by denitrification and leaching process.

  • PDF

Effect of Mixed Treatment of Urea Fertilizer and Zeolite on Nitrous Oxide and Ammonia Emission in Upland Soil

  • Park, Jun-Hong;Park, Sang-Jo;Seo, Young-Jin;Kwon, Oh-Heun;Choi, Seong-Yong;Park, So-Deuk;Kim, Jang-Eok
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.368-373
    • /
    • 2014
  • Ammonia loss from urea significantly hinders efficient use of urea in agriculture. The level of nitrous oxide ($N_2O$) a long-lived greenhouse gas in atmosphere has increased mainly due to anthropogenic source, especially application of nitrogen fertilizers. There are reports in the literature showing that the addition of zeolite to N sources can improve the nitrogen use efficiency. This study was conducted to evaluate nitrous oxide ($N_2O$) and ammonia ($NH_3$) emission by mixed treatment of urea and zeolite in upland crop field. Urea fertilizer and zeolite were applied at different rates to study their effect on $N_2O$ emission during red pepper cultivation in upland soils. The $N_2O$ gas was collected by static closed chamber method and measured by gas chromatography. Ammonia concentration was analyzed by closed-dynamic air flow system method. The total $N_2O$ flux increased in proportion to the level of N application. Emission of $N_2O$ from the field increased from the plots applied with urea-zeolite mixture compared to urea alone. But urea-zeolite mixture treatment reduced about 30% of $NH_3$-N volatilization amounts. These results showed that the application of urea and zeolite mixture had a positive influence on reduction of $NH_3$ volatilization, but led to the increase in $N_2O$ emission in upland soils.

Effects of Adding Urea and Molasses on Napiergrass Silage Quality

  • Yunus, M.;Ohba, N.;Shimojo, M.;Furuse, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권11호
    • /
    • pp.1542-1547
    • /
    • 2000
  • To standardize proper formulation of urea and molasses, the former to increase crude protein content of tropical grass and the latter for improving its silage quality, we examined the fermentation quality of silage of fresh and wilted napiergrass (Pennisetum purpureum Schumach) with different levels of urea and molasses with or without lactic acid bacteria (LAB). Silage was made of napiergrass with conditions of fresh young (Exp. 1),young wilted for half day (Exp. 2) and fresh mature (Exp. 3). Chopped plant materials of about 1cm length were ensiled into a laboratory silo and incubated for one month at $25^{\circ}C$. The treatments were the combination of 0, 0.2 and 0.6% of urea and 0, 2 and 5% of molasses (fresh material basis) with or without LAB inoculation. After opening the silo, pH, organic acids, volatile basic nitrogen (VBN) and total nitrogen (TN) were determined. Addition of molasses significantly (p<0.01) lowered pH values in three experiments. Though molasses addition increased lactic acid production even at a higher level of urea, pH values at 0 and 2% molasses were significantly increased by urea in fresh and wilted young silages, but in fresh mature silage it occurred only when molasses was not added. VBN/TN at 0.6% urea were decreased significantly by the highest molasses in three experiments. Significant increases in TN by the increasing of urea addition were observed at all levels of molasses in wilted young and fresh mature silages. In conclusion, a combination of 5% molasses and 0.6% urea could improve the nutritive and fermentation qualities of napiergrass silage under young, wilting and mature conditions.

벼 잎집무늬마름병균의 균사생장 및 균핵형성에 미치는 질소원의 효과 (Effect of Nitrogen Sources on Mycelial Growth and Sclerotial Formation of Rhizoctonia solani Causing Rice Sheath Blight)

  • 박경석;정봉구
    • 한국식물병리학회지
    • /
    • 제1권1호
    • /
    • pp.44-50
    • /
    • 1985
  • 벼 잎집무늬마름병균(Rhizoctonia solani Kuhn)의 생리적 특성을 조사하기 위하여 충북지역을 중심으로 채집 분리한 60여 Rhizoctonia 균중 균사생장 및 균핵형성에 특징이 있는 3개 균주를 선발하여 그들의 배양적 특성, 병원성 및 균핵형성에 미치는 질소원의 효과를 시험하였다. 이들 분리균주에서 PSA 배지상의 균사생장 및 균핵형성 등의 배양적 특성에 따라 선발한 3개 분리균주의 병원성은 균주간에 달랐다. 질소원으로서 Arginine, Alanine, Urea, Ammonium sulfate 및 Sodium nitrate 등은 균사생장 및 균사형성에 효과적이었으나 Cystine, Methionine, Lysine, Histidine, Tryptophan 및 Tyrosine 등은 뚜렷한 효과가 없었다. Urea, Sodium nitrate, Agrinine, Ammonium sulfate 및 Lysine 등은 질소원의 농도가 낮게 첨가된 배지에서 균사생장이 양호하였으나 Proline, Histidine, Alanine은 높은 농도 수준에서 양호하였으며 균핵형성은 모든 공시 질소원의 높은 농도 수준에서 양호하였다. 균사생장 및 균핵형성에 양호한 질소원인 Arginine, Alanine, Urea, Ammonium sulfate는 병원성도 증가시켰다. Proline 첨가 배지에서는 각 균주 공히 큰 균핵이 형성되었으며 Tryptophan을 함유한 배지에서 각 균주 모두 생육이 저조하였고, 배지의 갈변화가 가장 심하였다.

  • PDF