• 제목/요약/키워드: Urban radiation environment

검색결과 89건 처리시간 0.022초

하절기 단일 수목의 열 환경 관측을 통한 서열완화 효과 해석 (Analysis of Passive Cooling Effect of the Tree by Field Observations in the Summer)

  • 최동호;이부용
    • 한국태양에너지학회 논문집
    • /
    • 제26권4호
    • /
    • pp.109-118
    • /
    • 2006
  • The tree is regarded as an sustainable architectural outdoor design element which reduce urban heat island effect by its solar shading and evapotranspiration. This study carried out field observations of measuring thermal environment of selected tree and its ambience to determine passive cooling effects. Results from the field observations are as below; Tree-shading effect to the thermal environment can not be properly evaluated by merely measuring air temperature differences between tree-shaded space and unshaded space for the maximum temperature difference is less than $1.5^{\circ}C$. The differences of longwave radiation and shortwave radiation between tree-shaded space and unshaded space are measured. Shortwave radiation is considered as a main thermal comfort determining factor for the difference of the shortwave radiation is much bigger than that of longwave radiation. By thermal infrared image analysis, the surface temperature of the tree under strong solar radiation is measured same as ambient air temperature. By which the evapotranspiration is considered to retard tree surface temperature raising effectively.

하절기 단일건물 주변 외부공간의 장·단파 복사관측과 해석 (The Observation and Interpretation of Long and Short Wave Radiation of the External Environment Surrounding a Single Building in the Summer)

  • 백창현;최동호;이부용;이인규
    • 한국태양에너지학회 논문집
    • /
    • 제39권1호
    • /
    • pp.41-49
    • /
    • 2019
  • In this study, we analyzed the relationship between four elements: long-wave radiation, the direction of the building, BVR (Building View Ratio), and cloud amount. We examined how long-wave radiations surrounding a building influences the perception of heat in the summer. The results are as follows. (1) Long-wave radiation and BVR are highly correlated regardless of geographical direction. (2) Especially, during dawn in a clear day, areas with high BVR observed high levels of long-wave radiation. (3) This correlation suggests that higher BVR in urban areas will result in a greater number of tropical nights.

동절기 대구지역의 기상요소와 장파복사 특성 분석 (Characteristics of Meteorological Elements and Long-wave Radiation in the Greater Daegu Area During Winter)

  • 백창현;최동호;이부용;이인규
    • 한국태양에너지학회 논문집
    • /
    • 제37권6호
    • /
    • pp.93-102
    • /
    • 2017
  • Interpretation of relevance between long-wave radiation and meteorological elements is recognized as an essential element for understanding the underlying mechanism of urban thermal environment formation. In this study, we analyzed relation between three elements : long-wave radiation, temperature, and lower-middle class cloudiness. The correlation was analyzed through field observations. The results are as follows. (1) Temperatures and long-wave radiation increased from January to March. This phenomenon has been confirmed in urban and suburban areas. (2) Long-wave radiations showed a tendency to increase clearly with increasing cloudiness.

대구 도심과 인근 교외지역의 하절기 복사 성분 특성 연구 (Comparison and Analysis of Radiation Environment between Downtown and Suburban Area during Summer Season)

  • 최동호;이부용;오호엽
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.105-116
    • /
    • 2014
  • The objective of this study was to compare and analyze of radiation environment between downtown and suburban area by observation of short, diffuse and long-wave radiation during summer season. The followings are main results from this study. 1) The trends of long-wave radiation is increasing from May to August and the variation of daily range is decreased. It is confirmed that the temperature was closely relevant to long wave radiation. 2) During observation period, suburban area is higher than downtown the value of direct solar radiation. 3) There are much direct solar radiation in suburban area than downtown. But, it was measured much more horizontal solar radiation at the downtown area. From the this result, we can conclude that diffuse radiation play a important role at horizontal solar radiation.

도심부와 교외지역의 장·단파 복사와 상관도 분석 (I) -대구지역의 동·하절기 장·단파 복사 관측과 해석 - (Long and Short Wave Radiation and Correlation Analysis Between Downtown and Suburban Area(I) - Observation of the Long and Short Wave Radiation in Summer and Winter Season of Daegu -)

  • 최동호;이부용
    • 한국태양에너지학회 논문집
    • /
    • 제33권4호
    • /
    • pp.94-100
    • /
    • 2013
  • The objective of this study was to compare and analyze for seasonal long short-wave radiation characteristics between downtown area and suburban area in Daegu through field observations. This study was confirmed the regional and seasonal radiation environments and it can utilize as basic data for the analysis of the urban radiation environment and the effects of urbanization. The followings are main results from this study. 1) The downward shortwave radiation showed the similar value of the radiation generally in the downtown area and the suburban area of the city during the winter and summer season. but, long-wave radiation is always higher in downtown area. 2) In case of the long-wave radiation at two stations, we observed $230{\sim}270W/m^2$ in the winter season and $415{\sim}470W/m^2$ in summer season. As a result, we can see summer season is higher than winter about two times in long-wave radiation. 3) In case of short wave radiation, there is high correlation between two stations in winter season but very low correlation between two stations in summer season because of local atmosphere unstability and etc.

도시기상 관측을 위한 메타데이터의 표준화 (Standardization of Metadata for Urban Meteorological Observations)

  • 송윤영;채정훈;최민혁;박문수;최영진
    • 한국대기환경학회지
    • /
    • 제30권6호
    • /
    • pp.600-618
    • /
    • 2014
  • The metadata for urban meteorological observation is standardized through comparison with those established at the World Meteorological Organization and the Korea Meteorological Administration to understand the surrounding environment around the sites exactly and maintain the networks and sites efficiently. It categorizes into metadata for an observational network and observational sites. The latter is again divided into the metadata for station general information, local scale information, micro scale information, and visual information in order to explain urban environment in detail. The metadata also contains the static information such as urban structure, surface cover, metabolism, communication, building density, roof type, moisture/heat sources, and traffic as well as the update information on the environment change, maintenance, replacement, and/or calibration of sensors. The standardized metadata for urban meteorological observation is applied to the Weather Information Service Engine (WISE) integrated meteorological sensor network and sites installed at Incheon area. It will be very useful for site manager as well as researchers in fields of urban meteorology, radiation, surface energy balance, anthropogenic heat, turbulence, heat storage, and boundary layer processes.

건축전열모델의 확장에 관한 연구 (Validation of Extended Building Heat Transfer Model)

  • 조민관
    • 설비공학논문집
    • /
    • 제15권5호
    • /
    • pp.422-431
    • /
    • 2003
  • Theory of the building heat transfer is generally limited to the heat flux to the surfaces of windows and walls, which influences the indoor climate of a building, in the field of architectural environmental engineering. While the heat flux from the buildings to their environment has been considered in the viewpoint of urban climate, its conventional theory have been rarely examined. The purpose of this study is to propose a building-urban heat transfer model for defining the relation between the building and the urban climate by extending the building heat transfer model. In this study, the extended building heat transfer model, where response factor method is used, is established on the urban space and the indoor space by the boundary of building envelopes. Computer simulation (HASP/ACLD) is conducted on the subjected urban area by the established building-urban heat transfer model. As a result it is logically proved that the short waves of solar radiation, which interact with long Waves of radiation from the buildings and the earth, increase the urban air temperature ana buildings largely influence on the urban climate.

옥외 온열환경 평가를 위한 복사 연성 CFD 해석기법의 개요 (Development and application of an assessment tool for outdoor thermal environment)

  • 임종연;장현재;송두삼
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.45-55
    • /
    • 2009
  • Deterioration of the outdoor thermal environment in urban areas has become worse and worse due to the urbanization and overpopulation, etc. Most of existing researches about thermal environment are focused on the indoor environment in which the radiation heat exchange is relatively constant. However, the outdoor thermal environment is changed with time passages, because the thermal environment is highly effected by solar radiation. Thus, to simulate the outdoor thermal environment with accuracy, the solar radiation calculation should be considered, and the radiation heat exchange between building surface and ground surface should be calculated. The purpose of this study is to develop the simulator that can be possible to evaluate the outdoor thermal environment and pedestrian thermal comfort. In this paper, a new method which is coupled with convective heat transfer simulation and radiative heat transfer simulation will be proposed. And the coupled simulation method will be described through case study for outdoor thermal environment. From the results of simulation, the coupled simulation proposed in this study can assess the outdoor thermal environment with accuracy.

알베도 증가에 따른 도시 기온 하강 효과에 관한 수치연구 (Numerical Study on the Air Cooling Effect due to Increased Albedo in Urban Area)

  • 이현주;이귀옥;이순환;이화운
    • 한국대기환경학회지
    • /
    • 제24권4호
    • /
    • pp.383-392
    • /
    • 2008
  • In order to clarify the influence of the change of urban surface albedo on mesoscale meteorological factors during the summertime, numerical experiments with various albedo of urban surface were carried out. Numerical model used in this study is PSU/NCAR MM5 V3.6. As a result of the numerical simulation intended of Busan assumed the increase of albedo of roofs, buildings, or roads, the increase of albedo can make decrease radiation effect of surface, so that it caused drops in ambient air temperature from $0.5^{\circ}C$ to $1^{\circ}C$ on the average, and the downtown of Busan formed along the trough presented a substantial drop in ambient air temperature about $1.5^{\circ}C$. Modeling studies suggest the increased surface albedo in urban area can reduce surface and air temperatures near the ground and affect related meteorological parameters such as winds and the depth of the mixed boundary layer.

건축외부공간에 있어서 인체의 일사열부하(日射熱負荷) 및 열적(熱的) 쾌적성(快適性)에 관한 실험적 연구 (Human Solar Heat Load and Thermal Comfort in an Outdoor Environment)

  • 정창원;윤인
    • 한국산업융합학회 논문집
    • /
    • 제1권2호
    • /
    • pp.65-74
    • /
    • 1998
  • The purpose of this paper is to investigate the mount of relief of human solar heat load and thermal comfort in outdoor environment in summer, Six different types of sites, T garden and its neighboring area in Japan, were selected as the experiment sites. The experiments were conducted from 22 to 29 August, 1994 to find the relationship between climatic conditions and human responses, Climatic conditions, subjects's thermal sensation and skin temperature were measured. Radiant heat exchange on the human body was estimated on the basis of the measured air and surface temperature and solar radiation. Thermal index Operative Temperature and New Effective Temperature was modified with the effect of the radiant heat exchange. Human thermal comfort and skin temperature is affected by the solar radiation and the sky factor in an outdoor environment. The effect of tree shade was verified on thermal comfort, The mount of relief of human solar heat load is relation to the existence of shade a solar radiation and the sky factor. The urban garden is one of the effective design element in an urban environmental planning.

  • PDF