• Title/Summary/Keyword: Urban high-rise buildings

Search Result 562, Processing Time 0.026 seconds

Design Method of Steel Slit Shear Walls with Tapered Links for Structural Condition Assessment

  • He, Liusheng;Wu, Chen;Jiang, Huanjun
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.361-368
    • /
    • 2020
  • The authors developed a new type of steel slit shear wall (SSSW) having the function of structural condition assessment through visually inspecting the out-of-plane deformation of the designed tapered links subjected to lateral deformation. To facilitate its practical application, this paper studies how to design dimensions of the tapered links. Two parameters, the width-to-thickness ratio of the tapered links and steel yield stress, were studied. The performance of structural condition assessment was affected by both parameters with the width-to-thickness ratio being the controlling one. Through both numerical and experimental study, the designed width-to-thickness ratio of tapered links for different levels of structural condition assessment was established considering the effect of different steel grades used. In practice, the dimensions of tapered links can be determined following the design equation provided. Finally, a design procedure for the proposed SSSW system is provided.

Toward the Future of Mechanized Construction Introduction and Future Prospects of Mechanized Constructions Using Digital Information

  • Makoto Kayashima;Yuusuke Noguchi
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.2
    • /
    • pp.87-102
    • /
    • 2022
  • In Japan, the population progresses to the extreme aging society and it is entering the phase of the population decrease while the population increase is continuing in the world. The construction market is expected to shrink accordingly, however the situation of labor shortage is expected to continue at a faster rate, because the aging of construction workers is progressing and new younger labor force cannot be secured. In order to supplement the labor shortage, it is required to progress mechanization, automation, labor saving, and efficiency improvement by utilizing the information well in each stage in a series of flow of planning, design, construction, operation, and disassembly in one building. The measures to maintain and expand the construction market by the new efficiency improvement techniques which enhance the utilization degree of building information are required. Currently, the elemental technologies which utilized BIM (Building Information Modeling) are accumulated by advancing digitization in each phase. DX (Digital transformation) in the construction industry can be achieved by the technology maturing and having a series of continuities. It is anticipated that this will evolve to a new method which is unprecedented. Present status of BIM and mechanized constructions in Taisei Construction are introduced, and future prospect is described.

Study on the Utilization of Public Data for the Introduction of Solar Energy in Rural Areas (농촌지역 태양광에너지 도입을 위한 공공데이터 활용방안)

  • Kim, Sang-Bum;Kim, Yong-Gyun
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.175-182
    • /
    • 2023
  • The purpose of this study, the trend of renewable energy, domestic and foreign renewable energy policies, and the flow of the legal system related to renewable energy location were identified, and a location analysis using public data was studied when solar energy was located. First, renewable energy is leading to energy conversion by reducing the proportion of existing fossil fuel-centered energy sources in the global trend and increasing the proportion of renewable energy, an eco-friendly energy source, and changing the institutional and market structure. Second, large-scale solar energy power plants are installed and operated in rural areas where there is no change in insolation and land prices are cheaper than in urban areas where there are many changes in insolation due to surrounding high-rise buildings and street trees. Third, if a preliminary location review is conducted using public data at this time, it will be easy to identify the optimal location for area and size calculation. Fourth, the solar energy location functional area was studied in area A, and the total area of the target area was 624.5km2, with 392.7km2 and 62.9% of the avoidance area where solar power cannot be located.

New or Renew: Constructing Tomorrow with Kit of Parts

  • Ilkay Standard;Sena Kucukayan
    • International Journal of High-Rise Buildings
    • /
    • v.13 no.1
    • /
    • pp.97-102
    • /
    • 2024
  • In this paper, we would like to share our ongoing research on global population and demographic shifts and the corresponding need for diverse responses. As population growth varies worldwide, the pressing issue is the current global housing shortage. The USA alone lacks 4 million homes, underlining the urgency for new construction and renewal of existing. Our focus is primarily on new building processes, which must also incorporate elements of renewal for future sustainability. Our research addresses several key questions: How will roles for construction professionals change? What should be the primary goal of the design process? What types of technologies are currently available, and which aspects of the process can be enhanced with AI? A significant part of our study is exploring sustainable building methods that reduce embodied carbon and increase speed of construction. Our goal is to extend the transition from smart homes to cities, analyzing the evolution towards smart communities and cities. A critical aspect of our research is the 'kit of parts concept, involving prefabrication and modular construction. This approach is essential for both rebuilding and new projects, potentially lowering costs in manufacturing and design for long term. Lastly, we present a detailed comparison of the construction industry with manufacturing.

Numerical Analysis of Wind Environment around Sungnyemun Gate Using a Computational Fluid Dynamics Model (전산유체역학 모델을 이용한 숭례문 주변의 풍환경 수치해석)

  • Son, Minu;Kim, Do-Yong
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2021
  • In this study, the wind environment in an urban area near Sungneymun gate was numerically investigated in the cases of inflow directions. The wind fields for the target area were simulated using Geographic Information System data and Computational Fluid Dynamics model. Results, including vector fields, three-dimensional wind velocity components, and wind speeds, were analyzed to examine flow characteristics. Wind direction variability affected by buildings was shown in the target area. The complex flows around Sungneymun did not depend on the inflow direction as a boundary condition. The wind speed around Sungneymun was generally 3 times stronger at 14 m above ground level (AGL) compared to the surface wind at 2 m AGL and relatively high in the case of easterly inflow. The effect of wind was also analyzed to be relatively significant at the southeast side of Sungneymun. Thus, it was suggested that the assessment of wind environment affected by high-rise and high-density buildings should be necessary for the architectural heritage in urban areas.

Coverage Analysis of VHF Aviation Communication Network for Initial UAM Operations Considering Real Terrain Environments (실제 지형 환경을 고려한 초기 UAM 운용을 위한 VHF 항공통신 커버리지 분석)

  • Seul-Ae Gwon;Seung-Kyu Han;Young-Ho Jung
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.102-108
    • /
    • 2024
  • In the initial stages of urban air mobility (UAM) operations, compliance with existing visual flight rules and instrument flight regulations for conventional human-crewed aircraft is crucial. Additionally, voice communication between the on board pilot and relevant UAM stakeholders, including vertiports, is essential. Consequently, very high frequency (VHF) aviation voice communication must be consistently provided throughout all phases of UAM operations. This paper presents the results of the VHF communication coverage analysis for the initial UAM demonstration areas, encompassing the Hangang River and Incheon Ara-Canal corridors, as well as potential vertiport candidate locations. By considering the influence of terrain and buildings through the utilization of a digital surface model (DSM), communication quality prediction results are obtained for the analysis areas. The three-dimensional coverage analysis results indicate that stable coverage can be achieved within altitude corridors ranging from 300 m to 600 m. However, there are shaded areas in the low-altitude vertiport regions due to the impact of high-rise buildings. Therefore, additional research to ensure stable coverage around vertiports in the lower altitude areas is required.

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Enhancing the Seismic Performance of Multi-storey Buildings with a Modular Tied Braced Frame System with Added Energy Dissipating Devices

  • Tremblay, R.;Chen, L.;Tirca, L.
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.21-33
    • /
    • 2014
  • The tied braced frame (TBF) system was developed to achieve uniform seismic inelastic demand along the height of multi-storey eccentrically braced steel frames. A modular tied braced frame (M-TBF) configuration has been recently proposed to reach the same objective while reducing the large axial force demand imposed on the vertical tie members connecting the link beams together in TBFs. M-TBFs may however experience variations in storey drifts at levels where the ties have been removed to form the modules. In this paper, the possibility of reducing the discontinuity in displacement response of a 16-storey M-TBF structure by introducing energy dissipating (ED) devices between the modules is examined. Two M-TBF configurations are investigated: an M-TBF with two 8-storey modules and an M-TBF with four 4-storey modules. Three types of ED devices are studied: friction dampers (FD), buckling restrained bracing (BRB) members and self-centering energy dissipative (SCED) members. The ED devices were sized such that no additional force demand was imposed on the discontinuous tie members. Nonlinear response history analysis showed that all three ED systems can be used to reduce discontinuities in storey drifts of M-TBFs. The BRB members experienced the smallest peak deformations whereas minimum residual deformations were obtained with the SCED devices.

The First Skyscraper Revisited

  • Ali, Mir M.;Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Debates on what is the first skyscraper have been ongoing from time to time since the construction of the Home Insurance Building in Chicago in 1885, which is generally recognized as the first built skyscraper. This paper attempts to verify this assertion through a detailed investigation after identifying the criteria that characterize a skyscraper. By considering and examining several competing buildings for the title of "first skyscraper" in terms of their levels of satisfying these criteria, the paper reconfirms that the Home Insurance Building in Chicago indeed qualifies as the first skyscraper and is the harbinger of future skyscrapers. By introducing technological and associated architectural innovations in this pioneering building, its designer William Le Baron Jenney paved the way for the construction of future skyscrapers. In traditional construction, heavy masonry walls especially at lower levels did not allow large window openings in exterior walls that would permit ample daylight. For the Home Insurance Building, originally built with 10 stories, Jenney created a metal-framed skeletal structure that carried the building's loads, making the building lighter and allowed for large windows permitting ample natural light to the building's interior. The exterior iron columns were encased in relatively small masonry piers mainly for fireproofing, weather-protection and façade aesthetics. Relying on the structural framing on the building's perimeter, the exterior masonry thus turned into a rudimentary "curtain wall" system, heralding the use of curtain wall construction in future skyscrapers. This building's innovative structural system led to what is known as the "Chicago Skeleton," and eventually produced remarkable skyscrapers all over the world.

A Study on Street Vitality of Two Different Types of Superblocks - With a case of Yeoksam 2-dong, Seoul - (유형별 슈퍼블록이 가로활력에 미치는 영향 분석 - 서울시 강남구 역삼2동을 사례로 -)

  • Joo, Sang-Min;Kim, Jee-Yeop
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.10
    • /
    • pp.71-82
    • /
    • 2019
  • This study tried to prove why a low-rise residential block is more vitalized than in a superblock consisted of an apartment housing complex. To do this, two adjacent superblocks in Yeoksam 2-dong were selected as a case study among superblocks of residential area in Gangnam, Seoul. It adopted the concept of 'complexity', 'Osmosis', 'Vitality' and 'Permeability' for evaluation indexes to measure street vitality. As a result, four indexes were clearly higher in low-density residential superblocks than apartment housing complex superblocks. First, the superblocks for apartment housing complexes showed a lower 'complexity' because large-scale parcels for an apartment housing complex reduces a possibility for various land uses. Second, smaller blocks improved "osmosis" compared to larger blocks, and the larger the block, the less likely it is that buildings and streets penetrate activity. Third, as the apartment complex block became larger, the number of accesses decreased. Thus, it did not provide vitality to the streets. Fourth, high permeability was shown in the low-density superblocks, while that of the superblock consisted of apartment housing complexes was very low because the entrance of the complexes entrance is closed to the public. The results of this study demonstrated that an apartment housing complex may hamper street vitality and deteriorate the quality of urban environments.