• 제목/요약/키워드: Urban heat island

검색결과 339건 처리시간 0.028초

드론을 활용한 도시폭염지역의 열섬 저감기법 효과 비교 분석 (Comparative Analysis of the Effects of Heat Island Reduction Techniques in Urban Heatwave Areas Using Drones)

  • 조영일;윤동현;신지영;이명진
    • 대한원격탐사학회지
    • /
    • 제37권6_3호
    • /
    • pp.1985-1999
    • /
    • 2021
  • 본 연구의 목적은 EPA(Environmental Protection Agency)에서 활용하는 도시열섬 저감기법(옥상녹화, 쿨루프, 차열도료포장 및 차열블럭포장 등)을 연구지역에 적용하여 토지피복 객체간 비교 분석으로 실질적 효과 파악을 목적으로 한다. 이를 위해, 경상남도 김해시 장유무계지역을 연구지역으로 선정하고, 드론 DJI Matrice 300 RTK에 열적외선 영역센서 FLIR Vue Pro R과 가시광선 영역센서인 H20T 1/2.3" CMOS, 12 MP를 활용하여 계측하였다. 계측 일정은 7월 27일 아침 7시 15분부터 저녁 7시 15분까지 1시간 30분 간격으로 총 9장의 열지도와 비교군 토지피복 객체(711개) 열섬 저감기법 토지피복 객체(180개) 를 추출하였다. 추출한 180개의 객체 별 효과값 산출 후, 기법 종류별 효과를 종합한 결과 주간시간 기준 쿨루프 4.71℃, 옥상녹화 3.40℃, 차열도료포장 0.43℃, 차열블록포장 -0.85℃의 열섬 저감효과가 있는 것으로 분석되었다. 시간대별 효과 비교 결과 촬영일 기준 남중시각 인근인 13시에서 기법들의 열섬 저감효과가 가장 높은 것으로 나타났으며, 해당 시각을 지난 13시에서 14:30분 사이에 쿨루프 -8.19℃, 옥상녹화 -5.56℃, 차열도료포장 -1.78℃, 차열블록포장 -1.57℃의 온도 저감의 효율이 변화하였다. 본 연구는 드론과 같은 고해상도 영상을 활용하여 도시열섬 저감기법을 검증한 사례 연구이다. 향후, 고정밀 공간해상도를 가지는 초소형 위성 등의 직접적인 활용 예시가 가능할 것으로 사료된다.

The Effect of Building Morphology on Sea Breeze Penetration over the Kanto Plain - Analysis of Mean Kinetic Energy Balance of Moving Control Volume along Sea Breeze -

  • Sato, Taiki;Ooka, Ryozo;Murakami, Shuzo
    • 국제초고층학회논문집
    • /
    • 제1권2호
    • /
    • pp.73-80
    • /
    • 2012
  • In order to use sea breezes to counter the heat island phenomena, i.e. to promote urban ventilation, it is necessary to clarify the effect of building morphology and height on large-scale wind fields. In this study, the sea breeze in the vicinity of the Kanto Plain in Japan is simulated using a mesoscale meteorological model incorporating an urban canopy model, and the inland penetration of sea breezes is accurately reproduced. Additionally, a mean kinetic energy balance within a domain (Control Volume; CV) moving along the sea breeze is analysed. From the results, it is clarified that the sea breeze is interrupted by the resistance and turbulence caused by buildings at the centre of Tokyo. The interruption effect is increased in accordance with the height of these buildings. On the other hand, adverse pressure gradients interrupt in the internal region.

아파트 단지내의 열섬효과가 대기오염물질 확산에 미치는 영향 해석을 위한 열유동장 수치모의 (A Numerical Simulation of Heat Flow Field for Heat Island Effect Analysis to Air Pollutants Dispersion in Apartment Complex)

  • 장은숙
    • 한국환경과학회지
    • /
    • 제14권6호
    • /
    • pp.577-582
    • /
    • 2005
  • Enormous apartment complexes in urban areas, temporary inversion state and heat island effect occur due to the strong sunshine and weak wind speeds which hinders the dispersion of air pollutants that are emitted from neighboring areas of apartment complexes. In this study, analysis were conducted by using the Fluent code based on the CFD(Computation Fluid Dynamics), including building layout, material, building height from the ground surface, the heat, analysis of flow field in the apartment complex. It was estimated that the temporal radiation inversion phenomenon during the daytime, which was caused by the weak wind speed and higher temperatures in the upper level, contributed to the stagnation of the air pollutants in the lower layer of the apartment complex.

LEED Certification and Its Effectiveness on Urban Heat Island Effect

  • Kim, Hwan-Yong;Gu, Dong-Hwan
    • 한국BIM학회 논문집
    • /
    • 제5권4호
    • /
    • pp.30-36
    • /
    • 2015
  • The Leadership in Energy and Environmental Design (LEED) has provided abundant resources and guidelines for a new project to become a sustainable anchor in the neighborhood. Paired with a range of checklist, LEED has strong influence on the standards for a sustainable building, and it also has played an iconic role in energy-efficient architecture. However, it is still unclear as to whether or not an LEED certified building enhances environmental benefits to its surroundings. If an LEED certification promises a baseline for an eco-friendly building, then a group of these structures should ensure significant environmental benefits to the society. This is the main question of this study, and the authors answer this hypothesis by examining the relationship of LEED certificates and their influence on outdoor temperature, especially in terms of urban heat island effect. The goal of this paper is to analyze the influence of the LEED certification on urban temperature as an indicator of sustainable architecture's regional interactions. If an LEED certificate is regarded as a strong contributor to a sustainable built environment, then a group of these certificates should result in greater benefits to society. To this extent, the authors question if there is any possible relationship between a large concentration of LEED certified sites and the temperature of their surroundings. To properly assess the research direction, Global Moran's I analysis, Local Moran's I analysis, and Hot Spot analysis are implemented to find the clustered areas of LEED certified buildings. For examining relationships between clustered area and its temperature, correlation efficients are calculated.

건물과 수목의 그림자에 의한 도시의 열 분포 산정 및 저감효과 연구 (Estimating the urban radiation heat flux distribution and the reduction effect of building and tree shade)

  • 박채연;이동근;윤준하
    • 한국환경복원기술학회지
    • /
    • 제21권6호
    • /
    • pp.1-13
    • /
    • 2018
  • Mapping radiation heat flux of urban area is essential for urban design and landscape planning. Because controlling urban geometry and generating green space are important urban design strategies for reducing urban heat, urban planner and designer need to recognize the micro urban heat distribution for adequate urban planning. This study suggests a new methodology for mapping urban radiation heat flux in a micro scale considering buildings and trees' shade. For doing that, firstly, we calculate net radiation for each urban surfaces (building, road (not shaded, building shaded, tree shaded), ground (not shaded, building shaded, tree shaded), tree (not shaded, building shaded)). Then, by multiplying the area ratio of surfaces to the net radiation, we can obtain the radiation heat flux in micro-scale. The estimated net radiation results were found to be robust with a $R^2$ of 90%, which indicates a strong explanatory power of the model. The radiation heat flux map for 12h $17^{th}$ August explains that areas under the building and tree have lower net radiation heat flux, indicating that shading is a good strategy for reducing incident radiation. This method can be used for developing thermal friendly urban plan.

근린단위의 도시열섬관리를 위한 국지온도와 도시환경의 관계 (Relationship between Urban Environment and Local Temperature for Managing Urban Heat Island Effect in Neighborhood)

  • 이건원
    • 한국산학기술학회논문지
    • /
    • 제18권10호
    • /
    • pp.806-816
    • /
    • 2017
  • 본 연구는 국지온도에 영향을 미치는 요소를 도출함으로써 국지온도 관리 및 열섬현상 저감을 위한 효과적인 정책제시를 위한 기초데이터 확보를 목적으로 한다. 국지온도에 영향을 미치는 요소로 자연환경, 토지이용, 토지피복 등의 세 가지를 선정하였다. 이를 위해 2007년, 2011~2016년 7월과 8월의 전국 자동기상관측시스템(AWS. Automatic Weather System) 측정 지점 500m 반경($0.79km^2$) 내의 토지피복도, 토지이용 면적 데이터를 활용하였다. 연구를 위해서 다중회귀분석을 바탕으로 위계적 회귀분석(Hierarchical Regression Analysis)을 이용하여 각 변수의 투입에 따른 모델의 설명력을 검토하였다. 연구결과, 도시열섬 저감 및 국지온도 상승을 억제하기 위해서 교통관련 인자들에 대한 조절을 위한 적절한 정책적 수단이 필요하며, 그리고 국지온도 상승을 억제하기 위해서 산림지 면적을 증가시킬 수 있도록 토지이용계획상의 배려가 필요하다는 결론을 얻을 수 있었다. 본 연구는 추후 열섬현상 저감을 위해 보다 효과적인 정책 수립과 도시의 지속성 제고 전략을 마련 할 수 있는 방안을 제시했으며, 토지이용과 토지피복면적 등의 상세한 자료들을 분석에 활용했다는 점에서 의의가 있다.

인공열과 land-use가 부산시의 열적 환경에 미치는 영향 연구 (A Study on The Effect of Anthropogenic Heat Flux and Land-Use on Thermal Environment in Pusan)

  • 김유근
    • 한국대기환경학회지
    • /
    • 제16권4호
    • /
    • pp.363-372
    • /
    • 2000
  • In order to overtake a quantitative analysis of effect of anthropogenic heat and different land-use on urban thermal environment numerical simulation of surface energy budget was carried out under typical summer synoptic condition. It is beneficial to understand surface temperature of complex urban surace. The different land-use types are classified of rice field farm fruit garden residential region forest water and swamp by using map scaled 1/25000 of Pusan metropolitan. The model predicts that maximum heat island intensity in the central part of Pusan is 7$^{\circ}C$ at 2000 LST in summertime. The surface temperature is propotional to the density of constructions. The effect of anthropogenic heat generation on surface temperature is the increase of 0.3$^{\circ}C$ at 1400LST in the central part of Pusan during summertime.

  • PDF

도시 확장에 따른 온열환경의 변화 (Change of Thermal Environment with Urban Expansion)

  • 김상진
    • 한국태양에너지학회 논문집
    • /
    • 제27권2호
    • /
    • pp.95-101
    • /
    • 2007
  • The surface changes due to urban expansion and the increase of artificial heat releases have brought significant climate changes such as heat island phenomenon in urban area. Furthermore, these changes also have brought serious problems such as air temperature increase, wind changes, and air pollution in urban area. Comprehensive analytical technologies considering various effects are required to analyse complicated mechanism of climate changes, and review the efficient measures. In this research, the effect of the urban expansion in Tokyo and Bangkok area on urban environment will be discussed. By using CFD, urban development and the mechanism of global warming and wind change are studied in those two cities. As a result of numerical research, the surface changes of city could bring the environmental changes in urban area.

다항목 평가기법의 적응을 통한 열섬현상의 평가 (An Evaluation of the Phenomenon of Heat-Island Effect by Multi-Criteria Methods)

  • 이정민;도후조;나정화;김수봉;정응호
    • 한국환경과학회지
    • /
    • 제14권11호
    • /
    • pp.1005-1014
    • /
    • 2005
  • The purpose of this research was to present multi-criteria which were related to the heat island and find methods which decreased heat island affection on the ecological landscape planning. The results of this study were as follows. According to the analysis of surface temperatures, the first grade was the outside-city like a mountain and its temperature was less than $13.0^{\circ}C$. The fifth grade was the downtown, industrial area and its temperature was more than $26.9^{\circ}C$. Therefore, the result was seen the serious heat-island effect. The results of field survey, the closer to the first grade, the higher the value of green coverage. The closer to the fifth grade, the higher the value of impermeability surface, paving materials and colors. According to the correlation analysis, the temperature had high correlation with impermeability surface, paving materials and colors. According to the simple regression analysis, permeability surface, green coverage, topography, impermeability surface, paving materials f: colors, human impact related with surface temperatures. To plan for the decrease of Heat-Island Effect needed the extension of green space, decrease of impermeability surface. This research suggested data for urban green plan and decrease of heat island effect, but there was a limit to get the objective method for grade classification because of lacking in the basic data, the research of multi-criteria will be accomplished continuously.

Monitoring and spatio-temporal analysis of UHI effect for Mansa district of Punjab, India

  • Kaur, Rajveer;Pandey, Puneeta
    • Advances in environmental research
    • /
    • 제9권1호
    • /
    • pp.19-39
    • /
    • 2020
  • Urban heat island (UHI) is one of the most important climatic implications of urbanization and thus a matter of key concern for environmentalists of the world in the twenty-first century. The relationship between climate and urbanization has been better understood with the introduction of thermal remote sensing. So, this study is an attempt to understand the influence of urbanization on local temperature for a small developing city. The study focuses on the investigation of intensity of atmospheric and surface urban heat island for a small urbanizing district of Punjab, India. Landsat 8 OLI/TIRS satellite data and field observations were used to examine the spatial pattern of surface and atmospheric UHI effect respectively, for the month of April, 2018. The satellite data has been used to cover the larger geographical area while field observations were taken for simultaneous and daily temperature measurements for different land use types. The significant influence of land use/land cover (LULC) patterns on UHI effect was analyzed using normalized built-up and vegetation indices (NDBI, NDVI) that were derived from remote sensing satellite data. The statistical analysis carried out for land surface temperature (LST) and LULC indicators displayed negative correlation for LST and NDVI while NDBI and LST exhibited positive correlation depicting attenuation in UHI effect by abundant vegetation. The comparison of remote sensing and in-situ observations were also carried out in the study. The research concluded in finding both nocturnal and daytime UHI effect based on diurnal air temperature observations. The study recommends the urgent need to explore and impose effective UHI mitigation measures for the sustainable urban growth.