• Title/Summary/Keyword: Urban fire

Search Result 348, Processing Time 0.026 seconds

A Study on the Character and Walking Velocity of Crowd Going up Stairs (계단에서 올라가는 군집보행의 속도에 관한 조사 및 특성에 관한 연구)

  • Park, Jae-Sung
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.72-77
    • /
    • 2011
  • The effort of transferring some parts of urban functions to the underground space is growing trend among modem cities because of the limit of horizontal land use, the rise of land value, the diversification of human desire, etc. Thus, the basement of building and the subway station have deepened. It calls our attention to safety about evacuation from the underground space to the ground. Until now, the study about crowding walk in stairs has been progressed, focusing on the crowding walk that is going down the stairs, and there is no study about crowding walk that is going up the stairs. This study measured walking pace by crowd density that is going up the stairs in the subway station stairs making one-way movement of crowd. The actual survey showed that the mathematical relation 'V=0.638-0.0949p' determines going up walking velocity at a gradient of $23^{\circ}$, and the mathematical relation will be 'V=0.597-0.1067p' at a gradient of $30^{\circ}$, when it is converted, based on the average walking velocity of crowd by the slope of the stairs which is recommended by Architectural Institute of Japan.

Consequence Analysis for Release Scenario of Buried High Pressure Natural Gas Pipeline (지하매설 도시가스배관의 누출시나리오에 따른 사고피해영향분석)

  • Kim, Jin Hyung;Ko, Byung Seok;Yang, Jae Mo;Ko, Sang-Wook;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2014
  • Buried natural gas pipelines in densely populated urban areas have serious hazards of property damages and casualties generated by release, dispersion, fire and explosion of gas caused by outside or inside failures. So as to prevent any accident in advance, managers implement danger management based on quantitative risk analysis. In order to evaluate quantitative risk about buried natural gas pipelines, we need calculation for radiant heat and pressure wave caused by calculation for release rate of chemical material, dispersion analysis, fire or explosion modeling through consequence analysis in priority, in this paper, we carry out calculation for release rate of pressured natural gas, radiant heat of fireball based in accident scenario of actual "San Bruno" buried high pressured pipelines through models which CCPS, TNO provide and compare with an actual damage result.

A Study on utilization of 3-Dimension GIS for Disaster Prevention on Urban Safety and Disaster Paradigm (도시안전패러다임을 고려한 방재분야 3차원 공간정보 활용방안 연구)

  • Park, Young-Jin;Yeon, Kyung-Hwan
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.136-141
    • /
    • 2008
  • The rapid development of the information technology has passed over the implementation of the virtual reality. It is realizing information services that are form of the globalization, based on the Internet. In addition, the effort to apply IT to public administration for public services has been made. The remarkable development of computer hardware has overcome the limit of the information distribution and emerged for practical use in various fields such as public institution, underground facilities management, tourism industry development etc. However, the practical use of Virtual Reality with Three-Dimensional GIS on disaster management by Korea National Emergency Management Agency is very much low. Therefore, this studies focus on how to use 3-Dimensional GIS for the purpose of fire disaster prevention. The studies also discussed, through understanding of the limitations of 2-Dimensional GIS, the establishment of basis for fire prevention technology development and its utilization among those ubiquitous city paradigms, which have become so much issues these days.

  • PDF

A Study on Safety Policies for a Transition to a Hydrogen Economy (수소경제로의 이행을 위한 안전관리 정책 연구)

  • Jun, Daechun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • Hydrogen, which can be produced from abundant and widely distributed renewable energy resources, seems to be a promising candidate for solving the concerns for improving energy security, urban air pollution, and reducing greenhouse gas emissions. The two primary motivating factors for hydrogen economy are fossil fuel supply limitations and concerns about global warming. But the safety issues associated with hydrogen economy need to be investigated and fully understood before being considered as a future energy source. Limited operating experience with hydrogen energy systems in consumer environments is recognised as a significant barrier to the implementation of hydrogen economy. To prevent unnecessary restrictions on emerging codes, standards and local regulations, safety policies based on real hazards should be developed. This article studies briefly the direct impact-distances from hazard events such as hydrogen release and jet fire, and damage levels from hydrogen gas explosion in a confined space. Based on the direct impact-distances indicated in the accident scenarios and consumer environments in Korea, the safety policies, which are related to hydrogen filling station, hydrogen fuel cell car, portable fuel cell, domestic fuel cells, and hydrogen town, are suggested to implement hydrogen economy. To apply the safety policies and overcome the disadvantages of prescriptive risk management, which is setting guidance in great detail to management well known risk but is not covering unidentified risk, hybrid risk management model is also proposed.

Visualization Technology of GIS Associated with Seismic Fragility Analysis of Buried Pipelines in the Domestic Urban Area (국내 도심지 매설가스배관의 지진취약도 분석 연계 GIS 정보 가시화 기술)

  • Lee, Jinhyuk;Cha, Kyunghwa;Song, Sangguen;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • City-based Lifeline is expected to cause significant social and economic loss accompanied the secondary damage such as paralysis of urban functions and a large fire as well as the collapse caused by earthquake. Earthquake Disaster Response System of Korea is being operated with preparation, calculates the probability of failure of the facility through Seismic Fragility Model and evaluates the degree of earthquake disaster. In this paper, the time history analysis of buried gas pipeline in city-based lifeline was performed with consideration for ground characteristics and also seismic fragility model was developed by maximum likelihood estimation method. Analysis model was selected as the high-pressure pipe and the normal-pressure pipe buried in the city of Seoul, Korea's representative, modeling of soil was used for Winkler foundation model. Also, method to apply developed fragility model at GIS is presented.

An Environmental Impact Assessment System for Microscale Winds Based on a Computational Fluid Dynamics Model (전산유체역학모형에 근거한 미기상 바람환경 영향평가 시스템)

  • Kim, Kyu Rang;Koo, Hae Jung;Kwon, Tae Heon;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.337-348
    • /
    • 2011
  • Urban environmental problem became one of major issues during its urbanization processes. Environmental impacts are assessed during recent urban planning and development. Though the environmental impact assessment considers meteorological impact as a minor component, changes in wind environment during development can largely affect the distribution pattern of air temperature, humidity, and pollutants. Impact assessment of local wind is, therefore, a major element for impact assessment prior to any other meteorological impact assessment. Computational Fluid Dynamics (CFD) models are utilized in various fields such as in wind field assessment during a construction of a new building and in post analysis of a fire event over a mountain. CFD models require specially formatted input data and produce specific output files, which can be analyzed using special programs. CFD's huge requirement in computing power is another hurdle in practical use. In this study, a CFD model and related software processors were automated and integrated as a microscale wind environmental impact assessment system. A supercomputer system was used to reduce the running hours of the model. Input data processor ingests development plans in CAD or GIS formatted files and produces input data files for the CFD model. Output data processor produces various analytical graphs upon user requests. The system was used in assessing the impacts of a new building near an observatory on wind fields and showed the changes by the construction visually and quantitatively. The microscale wind assessment system will evolve, of course, incorporating new improvement of the models and processors. Nevertheless the framework suggested here can be utilized as a basic system for the assessment.

A Preliminary Study on the Improvement of Safety Level from Disasters in Rural Area (농촌지역의 재난발생에 따른 안전도 향상을 위한 기초연구)

  • Koo, Wonhoi;Shin, Hojoon;Baek, Minho
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.3
    • /
    • pp.393-399
    • /
    • 2015
  • In this study, the history of disaster occurrence in rural area was reviewed and damage characteristics were analyzed in order to improve the safety level according to the occurrence of disasters in non-urban area (rural area). Also, the concept of regional disaster prevention was adopted to rural area and the basic direction for establishing a disaster safe village in rural area was set. Due to the characteristics of rural area, the population and the number of households in the rural area were small, and the rural area showed lack of various disaster safety facilities and infrastructures and limitation in the access to the outside due to its geographical characteristics. Therefore, the matters regarding the direction for establishing and operating a regional disaster safe village reflecting humanities, facilities, infrastructures, and geographical and environmental characteristics were summarized.

A Study on the Establishment of Urban Life Safety Abnormalities Detection Service Using Multi-Type Complex Sensor Information (다종 복합센서 정보를 활용한 도심 생활안전 이상감지 서비스 구축방안 연구)

  • Woochul Choi;Bong-Joo Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.315-328
    • /
    • 2024
  • Purpose: The purpose of this paper is to present a service construction plan using multiple complex sensor information to detect abnormal situations in urban life safety that are difficult to identify on CCTV. Method: This study selected service scenarios based on actual testbed data and analyzed service importance for local government control center operators, which are main users. Result: Service scenarios were selected as detection of day and night dynamic object, Detection of sudden temperature changes, and Detection of time-series temperature changes. As a result of AHP analysis, walking and mobility collision risk situation services and fire foreshadowing detection services leading to immediate major disasters were highly evaluated. Conclusion: This study is significant in proposing a plan to build an anomaly detection service that can be used in local governments based on real data. This study is significant in proposing a plan to build an anomaly detection service that can be used by local governments based on testbed data.

Modeling and mapping fuel moisture content using equilibrium moisture content computed from weather data of the automatic mountain meteorology observation system (AMOS) (산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발)

  • Lee, HoonTaek;WON, Myoung-Soo;YOON, Suk-Hee;JANG, Keun-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.21-36
    • /
    • 2019
  • Dead fuel moisture content is a key variable in fire danger rating as it affects fire ignition and behavior. This study evaluates simple regression models estimating the moisture content of standardized 10-h fuel stick (10-h FMC) at three sites with different characteristics(urban and outside/inside the forest). Equilibrium moisture content (EMC) was used as an independent variable, and in-situ measured 10-h FMC was used as a dependent variable and validation data. 10-h FMC spatial distribution maps were created for dates with the most frequent fire occurrence during 2013-2018. Also, 10-h FMC values of the dates were analyzed to investigate under which 10-h FMC condition forest fire is likely to occur. As the results, fitted equations could explain considerable part of the variance in 10-h FMC (62~78%). Compared to the validation data, the models performed well with R2 ranged from 0.53 to 0.68, root mean squared error (RMSE) ranged from 2.52% to 3.43%, and bias ranged from -0.41% to 1.10%. When the 10-h FMC model fitted for one site was applied to the other sites, $R^2$ was maintained as the same while RMSE and bias increased up to 5.13% and 3.68%, respectively. The major deficiency of the 10-h FMC model was that it poorly caught the difference in the drying process after rainfall between 10-h FMC and EMC. From the analysis of 10-h FMC during the dates fire occurred, more than 70% of the fires occurred under a 10-h FMC condition of less than 10.5%. Overall, the present study suggested a simple model estimating 10-h FMC with acceptable performance. Applying the 10-h FMC model to the automatic mountain weather observation system was successfully tested to produce a national-scale 10-h FMC spatial distribution map. This data will be fundamental information for forest fire research, and will support the policy maker.

Performance Evaluation of Wireless Sensor Networks in the Subway Station of Workroom (지하철 역사내 기능실에 대한 무선 센서 네트워크 성능 분석)

  • An, Tea-Ki;Shin, Jeong-Ryol;Kim, Gab-Young;Yang, Se-Hyun;Choi, Gab-Bong;Sim, Bo-Seog
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1701-1708
    • /
    • 2011
  • A typical day in the subway transportation is used by hundreds of thousands are also concerned about the safety of the various workrooms with high underground fire or other less than in the subway users could be damaging even to be raised and there. In 2010, in fact, room air through vents in the fire because smoke and toxic gas accident victims, and train service suspended until such cases are often reported. In response to these incidents in subway stations, even if the latest IT technology, wireless sensor network technology and intelligent video surveillance technology by integrating fire and structural integrity, such as a comprehensive integrated surveillance system to monitor the development of intelligent urban transit system and are under study. In this study, prior to the application of the monitoring system into the field stations, authors carried out the ZigBee-based wireless sensor networks performance analyzation in the Chungmuro station. The test results at a communications room and ventilation room of the station are summarized and analyzed.

  • PDF