• Title/Summary/Keyword: Urban air temperature

Search Result 349, Processing Time 0.024 seconds

An Application of Satellite Image Analysis to Visualize the Effects of Urban Green Areas on Temperature (위성영상을 이용한 도시녹지의 기온저감 효과 분석)

  • Yoon, Min-Ho;Ahn, Tong-Mahn
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.46-53
    • /
    • 2009
  • Urbanization brings several changes to the natural environment. Its consequences can have a direct effect on climatic features, as in the Urban Heat Island Effect. One factor that directly affects the urban climate is the green area. In urban areas, vegetation is suppressed in order to accommodate manmade buildings and streets. In this paper we analyze the effect of green areas on the urban temperature in Seoul. The period selected for analysis was July 30th, 2007. The ground temperature was measured using Landsat TM satellite imagery. Land cover was calculated in terms of city area, water, bare soil, wet lands, grass lands, forest, and farmland. We extracted the surface temperature using the Linear Regression Model. Then, we did a regression analysis between air temperature at the Automatic Weather Station and surface temperature. Finally, we calculated the temperature decrease area and the population benefits from the green areas. Consequently, we determined that a green area with a radius of 500m will have a temperature reduction area of $67.33km^2$, in terms of urban area. This is 11.12% of Seoul's metropolitan area and 18.09% of the Seoul urban area. We can assume that about 1,892,000 people would be affected by this green area's temperature reduction. Also, we randomly chose 50 places to analysis a cross section of temperature reduction area. Temperature differences between the boundaries of green and urban areas are an average of $0.78^{\circ}C$. The highest temperature difference is $1.7^{\circ}C$, and the lowest temperature difference is $0.3^{\circ}C$. This study has demonstrated that we can understand how green areas truly affect air temperature.

Evaluation of the Effect of Urban-agriculture on Urban Heat Island Mitigation (도시농업의 도시열섬현상 저감효과에 대한 계량화 평가연구)

  • Eom, Ki-Cheol;Jung, Pil-Kyun;Park, So-Hyun;Yoo, Sung-Yung;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.848-852
    • /
    • 2012
  • Vegetation can make not only to lower the urban ambient air temperature (UAAT) by crop evapotranspiration (ET) and increasing solar radiation albedo, but also to reduce the urban air pollution by $CO_2$ uptake and $O_2$ emission in addition to the reducing ozone concentrations by aid of lower the UAAT. To evaluate the effect of vegetation on urban heat island mitigation (UHIM), the climate change of 6 cities during 30 years are analysed, and the amount of ET, $CO_2$ uptake, $O_2$ emission and ozone concentrations are estimated in Korea. The most hot season is the last part of July and the first part of August, and the highest average UAAT of a period of ten days was $35.03^{\circ}C$ during 30 years (1979 - 2008). The mean values of maximum ET of rice and soybean in urban area during urban heat island phenomena were 6.86 and $6.00mm\;day^{-1}$, respectively. The effect of rice and soybean cultivation on lowering the UAAT was assessed to be 10.5 and $3.0^{\circ}C$ in Suwon, respectively, whereas the differences between the UAAT and canopy temperature at urban paddy and upland in Ansung were 2.6 and $2.2^{\circ}C$. On the other hand, the urban-garden in Suwon city had resulted in lowering the UAAT and the surface temperature of buildings to 2.0 and $14.5^{\circ}C$, respectively. Furthermore, the amounts of $CO_2$ uptake by rice and soybean were estimated to be 20.27 and $15.54kg\;CO_2\;10a^{-1}day^{-1}$, respectively. The amounts of $O_2$ emission by rice and soybean were also assessed to be 14.74 and $11.30kg\;O_2\;10a^{-1}day^{-1}$, respectively. As other cleaning effect of air pollution, the ozone concentrations could be also estimated to reduce 21.0, 8.8, and 4.0 ppb through rice-, soybean cultivation, and urban gardening during most highest temperature period in summer, respectively.

A Study of the Characteristics of Input Boundary Conditions for the Prediction of Urban Air Flow based on Fluid Dynamics (유체 역학 기반 도시 기류장 예측을 위한 입력 경계 바람장 특성 연구)

  • Lee, Tae-Jin;Lee, Soon-Hwan;Lee, Hwawoon
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1017-1028
    • /
    • 2016
  • Wind information is one of the major inputs for the prediction of urban air flow using computational fluid dynamic (CFD) models. Therefore, the numerical characteristics of the wind data formed at their mother domains should be clarified to predict the urban air flow more precisely. In this study, the formation characteristics of the wind data in the Seoul region were used as the inlet wind information for a CFD based simulation and were analyzed using numerical weather prediction models for weather research and forecasting (WRF). Because air flow over the central part of the Korean peninsula is often controlled not only by synoptic scale westerly winds but also by the westerly sea breeze induced from the Yellow Sea, the westerly wind often dominates the entire Seoul region. Although simulations of wind speed and air temperature gave results that were slightly high and low, respectively, their temporal variation patterns agreed well with the observations. In the analysis of the vertical cross section, the variation of wind speed along the western boundary of Seoul is simpler in a large domain with the highest horizontal resolution as compared to a small domain with the same resolution. A strong convergence of the sea breeze due to precise topography leads to the simplification of the wind pattern. The same tendency was shown in the average vertical profiles of the wind speed. The difference in the simulated wind pattern of two different domains is greater during the night than in the daytime because of atmospheric stability and topographically induced mesoscale forcing.

A Study on Quantitative Estimation for prevention of Heat Island by Using New & Renewable Energy (신재생에너지 적용이 도시열섬방지에 미치는 기여도 분석)

  • Son, Won-Tug;Park, Jung-Han;Park, Kyung-Soon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.508-513
    • /
    • 2009
  • Significant air temperature increases in urban areas are known as the heat island phenomenon in a global scale. Therefore, we use numerical model in order to analyze quantitative effects by using new & renewable energy on the heat island phenomenon in urban area. The present study quantitatively analyzes the Urban Heat Island Effects, Energy-Saving Effects, and Environmental Load Decrease Effect along New and Renewable Energy Application which is 10% of the Building Energy Consumption.

  • PDF

Characteristics of Urban Meteorology in Seoul Metropolitan Area of Korea (수도권 지역의 도시 기상 특성)

  • Kim, Yeon-Hee;Choi, Da-Young;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.257-271
    • /
    • 2011
  • The aim of this study is to examine weather modification by urbanization and human activities. The characteristics of the urban heat island (UHI) and precipitation in Seoul metropolitan area of Korea are investigated to demonstrate that cities can change or modify local and nearby weather and climate, and to confirm that cities can initiate convection, change the behavior of convective precipitation, and enhance downstream precipitation. The data used in this study are surface meteorological station data observed in Seoul and its nearby 5 cities for the period of 1960 to 2009, and 162 Automatic Weather System stations data observed in the Seoul metropolitan area from 1998 to 2009. Air temperature and precipitation amount tend to increase with time, and relative humidity decreases because of urbanization. Similar to previous studies for other cities, the average maximum UHI is weakest in summer and is strong in autumn and winter, and the maximum UHI intensity is more frequently observed in the nighttime than in the daytime, decreases with increasing wind speed, and is enhanced for clear skies. Relatively warm regions extend in the east-west direction and relatively cold regions are located near the northern and southern mountains inside Seoul. The satellite cities in the outskirts of Seoul have been rapidly built up in recent years, thus exhibiting increases in near-surface air temperature. The yearly precipitation amount during the last 50 years is increased with time but rainy days are decreased. The heavy rainfall events of more than $20mm\;hr^{-1}$ increases with time. The substantial changes observed in precipitation in Seoul seem to be linked with the accelerated increase in the urban sprawl in recent decades which in turn has induced an intensification of the UHI effect and enhanced downstream precipitation. We also found that the frequency of intense rain showers has increased in Seoul metropolitan area.

Impact of the Local Surface Characteristics and the Distance from the Center of Heat Island to Suburban Areas on the Night Temperature Distribution over the Seoul Metropolitan Area (수도권 열섬 중심으로부터 교외까지의 거리 및 국지적 지표특성이 야간 기온분포에 미치는 영향)

  • Yi, Chae-Yeon;Kim, Kyu-Rang;An, Seung-Man;Choi, Young-Jean
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.35-49
    • /
    • 2014
  • In order to understand the impacts of surface characteristics and the distance from the urban heat island center to suburban areas on the mean night time air temperature, we analyzed GIS and AWS observational data. Spatial distributions of mean night time air temperature during the summer and winter periods of 2004-2011(six years) were utilized. Results show that the temperature gradients were different by distance and direction. We found high correlation between mean night-time air temperature and artificial land cover area within 1km and 200m radii during both summer(R=0.84) and winter(R=0.78) seasons. Regression models either from 1km and 200m land surface data explained the distribution of night-time temperature equally well if the input data had sufficient resolution with detailed attribute including building area and height.

Experimental Study of Moisture-Wicking Fabric as Cooling Pad for Novel Rotary Direct Evaporative Cooler

  • Sang-Hwan Park;Jae-Weon Jeong
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.335-341
    • /
    • 2023
  • This study proposes a novel rotary direct evaporative cooler and investigates the potential of a moisture-wicking fabric as a cooling pad for the proposed evaporative cooler. The rotary direct evaporative cooler rotates the cooling pad to reduce the water and energy consumption of the pump compared to those of existing direct evaporative coolers. A moisture-wicking fabric is considered as the material of the cooling pad, because of its high moisture-wicking property, enhancing water evaporation. Experiments are performed under various inlet air conditions while measuring the air temperature, relative humidity, air velocity, and differential pressure. The evaporative cooling efficiency and impacts of the inlet air temperature and air velocity on the cooling performance are also evaluated. The results demonstrate the potential of the moisture-wicking fabric as cooling pad of direct evaporative cooler.

Analysis of the Thermal Environment around an Urban Green Area in Seoul, Korea Using Climate Analysis Seoul (CAS) (Climate Analysis Seoul (CAS)를 이용한 서울 도심 녹지 주변의 열 환경 분석)

  • Lee, Jisu;Lee, Young-Gon;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.413-421
    • /
    • 2016
  • Climate Analysis Seoul (CAS) which provides gridded data relevant for thermal assessment was applied to one of the urban green areas, the Seonjeongneung, in Seoul, Korea. The thermal environment in the Seonjeongneung was evaluated from the CAS simulation for the five heat-wave issued cases during the last five years (2011~2015). The CAS has been improved continuously since it was developed. An updated version with a higher resolution of the CAS simulation domain and an addition of the vegetation information was used in this study. The influence of vegetation in the Seonjeongneung is estimated through the amount of the cold air generation ($Q_{ca}$) and air temperature deviation at each grid points, which are calculated by incorporating Geographic Information System (GIS) analysis on the simulation domain and meteorological analysis with the METeorology and atmospheric PHOtochemistry mesoscale MODel (MetPhoMod) in the CAS. The average amount of the cold air generation ($Q_{ca}$) at the Seonjeongneung is about $25.5m^3m^{-2}h^{-1}$ for the whole cases, and this value is similar to the ones in a forest or a well-wooded region. The average value of the total air temperature deviation (TD) is $-2.54^{\circ}C$ at the Seonjeongneung for the five cases. However, this cooling effect of the urban green area disappeared when the region is replaced by high-rise buildings in the CAS simulation. The $Q_{ca}$ drastically decreases to about $1.1m^3m^{-2}h^{-1}$ and the average TD shows an increase of $1.14^{\circ}C$ for the same events. This result shows that the vegetation in the Seonjeongneung supposes to keep down temperature during the heat-wave issued day and the average cooling effect of the green region is $3.68^{\circ}C$ quantitatively from the TD difference of the two simulations. The cooling effect represented with the TD difference is larger than $0.3^{\circ}C$ within 200 m distance from the boundary of the Seonjeongneung. Further improvements of the thermodynamical and advection processes above the model surface are required to consider more accurate assessment of the cooling effect for the urban green area.

A STUDY ON EXTRACTING THE SURFACE TEMPERATURE USING THERMAL INFRARED OF ASTER IMAGES IN URBAN AREA

  • Jo Myung-Hee;Kim Hyung-Sub;Kim Sung-Jae;Yu Seong-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.717-720
    • /
    • 2005
  • Recently as large sized urban development and the city ward drifting of population are caused, the urban surface temperature is raised very seriously and rapidly. These artificial developments have destroyed the inner and outer landscapes such as topography and have changed complex local climate such as a sudden rise in temperature, the change of wind field and air pollution. In order to clarify this problem visually, the studies on extracting the thermal infrared and the characteristic analysis of local climate in urban area had been performed by using the sixth band of Landsat TM and ETM+. However, there is a need to alternate Landsat TM and ETM+ because these satellite images are not applied any more. Therefore, in this paper it is proposed to use 2 Aster image (2004.4.17 daily 2b03, 2004.10.10 night 2b03) of EOS AM and to extract the surface temperature. Also, the pattern of surface temperature in urban area and the application possibility in local climate study are proposed by verifying the correlation with A WS data. Also, IKONOS image was used to figure out the artificial development area in visual.

  • PDF

Meteorological Characteristics in the Ulsan Metropolitan Region: Focus on Air Temperature and Winds (울산지역의 기상 특성: 기온과 바람을 중심으로)

  • Oh, Inbo;Bang, Jin-Hee;Kim, Yangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.181-194
    • /
    • 2015
  • Spatial-temporal meteorological features of the Ulsan metropolitan region (UMR) were analyzed using observations and high-resolution numerical modeling. Long-term trend analysis (1970~2013) showed a significant increase of $0.033^{\circ}Cyr^{-1}$ in the 5-year moving average temperature, although detailed short-term features varied, whereas wind speed and relative humidity over the same period displayed clear decreases of $-0.007ms^{-1}$ and $-0.29%yr^{-1}$, respectively. These trends indicate the effects of regional climate change and urbanization in the UMR. Seasonal variations averaged for the most recent three years, 2011~2013, showed that temperatures in three different regions (urban/industrial, suburban, coastal areas) of the UMR had similar seasonality, but significant differences among them were observed for a certain season. Urban and industrial complex regions were characterized by relatively higher temperatures with large differences (max.: $3.6^{\circ}C$) from that in the coastal area in summer. For wind speed, strong values in the range from 3.3 to $3.9ms^{-1}$ occurred in the coastal areas, with large differences clearly shown between the three regions in September and October. Diurnal variations of temperature were characterized by pronounced differences during the daytime (in summer) or nighttime (in winter) between the three regions. Results from the WRF modeling performed for four months of 2012 showed large variations in gridaverage temperature and winds in the UMR, which displayed significant changes by season. Especially, a clear temperature rise in the urban center was identified in July ($0.6^{\circ}C$ higher than nearby urban areas), and overall, relatively weak winds were simulated over urban and inland suburban regions in all seasons.