• Title/Summary/Keyword: Urban Tree

Search Result 450, Processing Time 0.025 seconds

A Comparative Analysis on the Pollination Potential Environment of Apis millifera and Bombus ignitus Using the Maxent Model - Focused on Seoul - (Maxent 모델을 이용한 호박벌과 양봉꿀벌의 수분 잠재환경 비교 분석 - 서울시를 중심으로 -)

  • Kim, Yoon-Ho;Cho, Yong-Hyeon;Bae, Yang-Seop;Kim, Tae-Jong;Son, In-Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • The honey bee has a crucial ecological status for maintaining the natural ecology system. Pollination mediations by honey bees are recognized as an efficient way to enhance the quality of biological diversity and green areas in the nature and the urban ecological system. However, the population of bee around the world is decreasing and we do not know exactly how bees react to the physical environment in the urban area. This study is a basic research for the improvement of pollination services in the Korean urban ecological system. It aims to induce and review environmental variables which have high relations with the activities of pollination mediation insects in the urban area. The study established a Maxent model using five urban environmental variables that reflect the ecology of Bombus ignitus and the place information where Bombus ignitus appears in 18 spots of Seoul city, and compared with previous research results on Apis millifera. Bombus ignitus preferred places with more natural environments such as mountain forest areas and vicinities of streams. They preferred Stratified Tree Area the most among the vegetation types existing in the urban area. Comparing chicken models, both species saw their response value drop as the building coverage rose. In the case of Apis millifera and Bombus ignitus variables, the response value of both species was high in 10 out of 20 types. The result of this study is expected to provide basic information for improving the pollination services in the Korean urban area and to be utilized as the basic materials for the future urban planning.

An Analytical Study on the Air Purification Effect of Urban Openspace - Focusing on Urban Roadside Trees - (도시녹지의 대기정화효과에 대한 분석적 연구 - 도시 가로수를 중심으로 -)

  • Sung, Hyun-Chan;Moon, Da-Mi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.17-28
    • /
    • 2003
  • The objective of this study is to review and verify whether the functions and effect of roadside trees generally known in theory are actually realized in urban roads and how well they are performed if the function and effect are really realized. The study was conducted with a focus on air purification effect of roadside trees. The m헤r study result is as follows. First, calculation of air purification effect of roadside trees showed that it is minimal. However, 7.4 units of broad-leaved trees is necessary in order to purify $SO_2$ discharged by one passenger car and 1,803.3 trees to purify $NO_2$. Second, regarding pollutant absorption capacity, air pollutant absorption capacity increased as the number of rows planted gets higher (i.e., 2-row plantation absorbs pollutant better than I-row plantation). In particular, "2-row plantation + lower-level shrub + buffer green belt" was as eight times high as "I-row plantation" in absorption capacity. Third, out of 30 roads with over 8 lanes in 15 cities, only 33.3% or a total of ten roads in seven cities had a median strip. Out of these ten roads, nine roads were planted in a double-layer consisting forest trees, shrubs, ground plants (grass). Analysis showed that out of six tree species planted along these roads, about a half of them were weak to air pollution. Also, based on the outcome of this study, charging a "plantation due" when people purchase a new car, improving layout of roadside trees, and reinforcing plantation of air purification tree species when selecting tree species for roadside trees were proposed.

Effects of Urban Greenspace on Improving Atmospheric Environment - Focusing on Jung-gu in Seoul - (도시녹지의 대기환경개선 효과 - 서울시 중구를 중심으로 -)

  • 조현길;조용현;안태원
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.83-90
    • /
    • 2003
  • This study explored effects of urban greenspace on improving atmospheric environment, which is concerned with $CO_2$, SO$_2$ and NO$_2$ uptake, and with reduction of summer air temperatures. The site of this study was focused on Jung-gu in Seoul. Tree density and cover were 1.1 trees/100 $m^2$ and 12.5% respectively for the study area except forest lands. Atmospheric purification by greenspace was associated with changes in tree cover per unit area of each land use type. The mean $CO_2$ storage by woody plants was 19.4t/ha, and annual uptake averaged 2.2t/ha/yr for $CO_2$, 1.9kg/ha/yr for SO$_2$ and 5.0kg/ha/yr for NO$_2$. Entire tree plantings in the study area played a significant role by annually offsetting $CO_2$ emissions of about 1,830t from fossil fuel consumption by 330 persons, SO$_2$ emissions of 1,620kg by 1,080 persons, and NO$_2$ emissions of 4,230kg by 450 persons. The summer air temperature was 3.6$^{\circ}C$ cooler at a location with 54% cover of woody plants and 4.5$^{\circ}C$ cooler at a forest site with 100% cover, compared to a place with no planting. A 10% increase of woody plant cover was estimated to decrease summer air temperature by approximately 0.6$^{\circ}C$ until a certain level of canopy cover. Analyzing data from the Automatic Weather Stations in Seoul revealed that increasing tree cover decreased mean air temperature for the summer season (Jun~Aug) in a nonlinear function. Woody plant cover was the best predictive variable of summer temperature reduction. The results from this study are expected to be useful in emphasizing the environmental benefits and importance of urban greenspace enlargement, and in urging the necessity for planting and management budgets.

AUTOMATIC ADJUSTMENT OF DISCREPANCIES BETWEEN LIDAR DATA STRIPS - USING THE CONTOUR TREE AND ITERATIVE CLOSEST POINT ALGORITHM

  • Lee, Jae-Bin;Han, Dong-Yeob;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.500-503
    • /
    • 2006
  • To adjust the discrepancy between Light Detection and Ranging (LIDAR) strips, previous researches generally have been conducted using conjugate features, which are called feature-based approaches. However, irrespective of the type of features used, the adjustment process relies upon the existence of suitable conjugate features within the overlapping area and the ability of employed methods to detect and extract the features. These limitations make the process complex and sometimes limit the applicability of developed methodologies because of a lack of suitable features in overlapping areas. To address these drawbacks, this paper presents a methodology using area-based algorithms. This approach is based on the scheme that discrepancies make complex the local height variations of LIDAR data whithin overlapping area. This scheme can be helpful to determine an appropriate transformation for adjustment in the way that minimizes the geographical complexity. During the process, the contour tree (CT) was used to represent the geological characteristics of LIDAR points in overlapping area and the Iterative Closest Points (ICP) algorithm was applied to automatically determine parameters of transformation. After transformation, discrepancies were measured again and the results were evaluated statistically. This research provides a robust methodology without restrictions involved in methods that employ conjugate features. Our method also makes the overall adjustment process generally applicable and automated.

  • PDF

Extraction of Spatial Information of Tree Using LIDAR Data in Urban Area (라이다 자료를 이용한 도시지역의 수목공간정보 추출)

  • Cho, Du-Young;Kim, Eui-Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.11-20
    • /
    • 2010
  • In situation that carbon dioxide emissions are being increased as urbanization, urban green space is being promoted as an alternative to find solution for these problems. In urban areas, trees have the ability to reduce carbon dioxide as well as to be aesthetic effect. In this study, we proposed the methodology which uses only LIDAR data in order to extract these trees information effectively. To improve the operational efficiency according to the extraction of trees, the proposed methodology was carried out using multiple data processing such as point, polygon and raster. Because the existing NDSM(Normalized Digital Surface Model) contains both the building and tree information, it has the problems of high complexity of data processing for extracting trees. Therefore, in order to improve these problems, this study used modified NDSM which was removed estimate regions of building. To evaluate the performance of the proposed methodology, three different zones which coexist buildings and trees within urban areas were selected and the accuracy of extracted trees was compared with the image taken by digital camera.

Impervious Surface Estimation Using Landsat-7 ETM+Image in An-sung Area (Landsat-7 ETM+영상을 이용한 안성지역의 불투수도 추정)

  • Kim, Sung-Hoon;Yun, Kong-Hyun;Sohn, Hong-Gyoo;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.529-536
    • /
    • 2007
  • As the Imperious surface is an important index for the estimation of urbanization and environmental change, the increase of impervious surfaces causes meteorological and hydrological changes like urban climate change, urban flood discharge increasing, urban flood frequency increasing, and urban flood modelling during the rainy season. In this study, the estimation of impervious surfaces is performed by using Landsat-7 ETM+ image in An-sung area. The construction of sampling data and checking data is used by IKONOS image. It transform to a tasselled cap and NDVI through the reflexibility rate of Landsat ETM+ image and analyze various variables that influence on impervious surface. Finally, the impervious surfaces map is accomplished by regression tree algorithm.

Analysis of Health Status of Street Trees and Major Affecting Factors on Deogyeong-daero in Suwon (수원시 덕영대로의 가로수 건강성 평가 및 주요 영향요인 분석)

  • Kim, Eun-Young;Jung, Kyung-Min
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.2
    • /
    • pp.49-57
    • /
    • 2019
  • The street trees increase the liveability of cities by reducing stormwater runoff, improving air quality, storing carbon, providing shade, and ameliorating the urban heat-island effect. In this study, the health status of street trees in Suwon was evaluated, and the factors affecting the growth of the trees were also derived. In order to evaluate the growth and health of street trees, field survey was carried out on a total of 125 trees in 25 sections of the Deogyeong-daero where is through the city. During the field survey, the following items were examined: Street trees health status (i.e. species, height, DBH (diameter at breast height), planting types, vigor, etc.), soil factors (i.e. soil temperature, humidity, pH, hardness, etc.), and environmental factors (i.e. landuse, road width, etc.). As the results of field survey, the main species of the street trees was Zelkova serrata, which was healthy in most of the sections. The factors such as planting types, soil temperatures, tree root cover, road extension, distance from the road were derived to affect the growth and health of street trees, and the differences were significant. The results of this study were derived the following conclusions for vigorous street trees: First, it is important to install and maintain the protection facilities like tree root cover for the growth of trees. Second, it is necessary to discuss how to plant multiple trees in narrow spaces like a street green space. Third, it is important to provide appropriate soil conditions continuously for growth of threes. Finally, it should be utilized as a mitigation measure of urban heat island effects.

A Preliminary Study on Assessment of Urban Parks and Green Zones of Ecological Attributes and Responsiveness to Climate Change (도시공원녹지의 생태성 및 기후변화 대응성 평가 기초 연구)

  • Sung, Hyun-Chan;Hwang, So-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.3
    • /
    • pp.107-117
    • /
    • 2013
  • Problems in regard of ecological stability of urban ecosystem ensue from climate change and urbanization. Particularly, urban ecological conditions are deteriorating both quantitatively and qualitatively to a great extent. The present study aims to assess the current condition of selected sites (i. e. urban green zones and parks) in terms of preset assessment components; to find out problems and relevant solutions to improve the quality and quantity of parks and green zones; and ultimately to suggest some measures applicable to coping with climate change as well as to securing the ecological attributes of urban green zones and parks. According to the findings of this study, from quantitative perspectives, ecological attributes and responsiveness to climate change are high on account of the large natural-soil area(80%). By contrast, from qualitative perspectives including the planting structure (1 layer: 47%), the percentage of bush area(17%), the connectivity with surrounding green zones (independent types: 44%), the wind paths considered (5.6%), the tree species with high carbon absorption rates (20%), water cycles (17%), energy (8%) and carbon storage capacities(61%), ecological attributes and responsiveness to climate change were found very low. These findings suggest that the ecological values of urban parks and green zones should be improved in the future by conserving their original forms, securing natural-soil grounds and employing multi-layered planting structures and water bodies, and that responsiveness to climate change should be enhanced by planting tree species with high carbon storage capacities and obtaining detention ponds. In sum, robust efforts should be exerted in the initial planning stages, and sustained, to apply the methodology of green-zone development along with securing ecological attributes and responsiveness to climate change.

Effects of Location and Soil Characteristics on the Vegetation Structure and Tree Vitality of Urban Park and Green Open Space (도시공원녹지의 입지환경과 토양특성이 식생구조와 수목활력도에 미치는 영향)

  • Kim, Seok-Kyu;Park, Seung-Burm;Nam, Jung-Chil;Kim, Seung-Hwan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.30-44
    • /
    • 2002
  • This study is conducted to analyze the change of location and soil characteristics effect on the condition of urban forest in Urban Park and Green Open Space The results of this study are as fallows; 1. Soil acidity is indicated pH 3.88 in Sasang park, pH 4.38 in Hwaji park, pH 4.40 in Daeyeon park, pH 4.68 in Sanseong amusement park, pH 5.15 in Molundae amusement park. 2. Species diversity indices of indicated Sasang park 0.9932, Hwaji park 1.1975, Daeyeon park 1.2160, Sanseong amusement park 1.3080, Molundae amusement park 1.3233 is due to location and soil environment in addition to air pollution effects. 3. The vitality of Pinus thunbergii 27.5ER in Sasang park, 24.9ER in Hwaji park, 24.5ER in Daeyeon park, 23.6ER in Sanseong amusement park, 21.0ER in Molundae park. This shows that tree vitality are impacted by location and soil characteristics. On the basis of the result above, vegetation devices are suggested : 1) Robinica pseudo-acacia management, 2) removing the hazard plants; Smilax china, Humulus japonicus, Pueraria thungergiana, 3) improving soil hardness and soil acidity.