• Title/Summary/Keyword: Urban Stream Management

Search Result 145, Processing Time 0.033 seconds

Stream Classification Based on the Ecological Characteristics for Effective Stream Management - In the Case of Nakdong River - (효율적인 하천관리를 위한 하천생태 특성을 고려한 유형 분류 - 낙동강수계를 대상으로 -)

  • Lee, Yoo-Kyoung;Lee, Sang-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.5
    • /
    • pp.103-114
    • /
    • 2012
  • The purpose of this research is classifying stream into different types depending on various factor from the perspective of stream corridor restoration and using it as basic data, which are used to consider efficient management and planning for the healthy stream according to the characteristic by types. In this study, 130 points of location of the Nakdong river basin which consist of various geographic factors have been chosen and hierarchical cluster analysis has been carried out in these points by using biological and physiochemical factors whose health can be considered to be predicted and evaluated. As a result of cluster analysis, there were three divided types. Type A whose biology and water quality are considered the best was the highest in forest area percentage so that it was classified into natural stream. Type B was classified into a rural region stream with a mixture of urban and agricultural region. Type C, with the most damaged water quality and biology health had the most urban region surface area and was named as urban region stream. Moreover, an overall restoration strategy according to characteristic by stream types was set. By the results of correlation analysis on factors, water quality showed a high correlation with biological properties and was affected by surrounding land usage. In evaluation of streams, it proves the need to consider not only other habitat's geographical and biological factors but also the water quality and land usage factors. There needs to be further research on stream ecosystem functionality factors and structural aspects by using a more objective and total evaluation result in selecting additional index and various other specific classification methods by stream types and its restoration strategies.

Spatial Characterization of Water Pollution in the Urban Stream Watershed (Gap Stream), Korea (도시하천(갑천) 유역에서 수질오염의 공간적 특성)

  • Lee, Heung-Soo;Hur, Jin;Jeong, Seon-A;Hwang, Soon-Jin;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.943-951
    • /
    • 2006
  • Spatial distribution of water pollution in the Gap Stream was investigated from October to November, 2005. Sampling was conducted three times including effluents discharged from a wastewater treatment plant (WWTP) and a dam reservoir during the low-flow period. As a typical urban stream, total nitrogen and inorganic nitrogen concentrations increased toward downstream. Ammonia concentration was the highest in the treated water of the wastewater treatment plant and the lowest nitrate concentration was found in the effluent of the dam reservoir. A part of soluble reactive phosphorous (SRP) in total phosphorous was 22~54% in the upstream reach of WWTP in the Gap Stream whereas 68~73% in the downstream reach. Mean chlorophyll-a concentration ranged from 1.6 to $11.0{\mu}g/L$ and it tends to increase toward downstream except for WWTP effluent. As expected, untreated wastewater and WWTP effluent were suggested as the major sources of water pollution in the Gap Stream. In this study, the water pollution of the Gap Stream is a significant undergoing typical eutrophication, caused by excessive phosphorus and nitrogen nutrients from WWTP located in the watershed. As a result, the critical factor for the water pollution was evaluated to dissolved inorganic nitrogen and phosphorus nutrients. Particularly, SRP is a most important for the eutrophication. It suggest that may occur in the most urban streams of Korean peninsula. Therefore, because the necessity of water pollution management in the urban stream, inorganic N and P nutrients should be included as an essential component of water quality criteria in the advanced water quality project of Korean Government by enforcing of water quality assessment and total maximum daily loads (TMDLs).

An Assessment on Efficiency of MBAS Removal in Urban Stream Maintenance Water by Using Sand Filtration (모래여과를 이용한 도시하천유지용수의 MBAS 제거 효율 평가)

  • Kim, hong bae;Ahn, kyung soo
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • Biological enhanced treatment and send filtration are established being operated to remove nutrients and MBAS(Methylene Blue Activate Substance) in the most of Waste Water Treatment Plant(WWTP) in Korea. However, untreated synthetic detergents and nutrients which directly run into the water system present an unpleasant view because of the foam, taste and odor generating filamentous periphytic algae and interrupting self-purification in the stream. Therefore, this research was enforced to know the MBAS removal efficiency of the sand filtration about G WWTP which reuses effluent as urban stream management water. As a result, the maximum removal efficiency using sand filtration was 63% after 24 hours and particularly 30% after 2 or 4 hours which turned out to be not that effective. In conclusion, It is recognized that other methods of MBAS removal and a research will be needed which reuse effluent as urban stream management water from now on. Because the MBAS removal with sand filtration is insufficient with economical efficiency from the fact that it needs long hours for a sand filtration treatment and the removal efficiency was almost below the expectation.

  • PDF

Development of Decision Support System for Flood Forecasting and Warning in Urban Stream (도시하천의 홍수예·경보를 위한 의사결정지원시스템 개발)

  • Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.743-750
    • /
    • 2008
  • Due to unusual climate change and global warming, drought and flood happen frequently not only in Korea but also in all over the world. It leads to the serious damages and injuries in urban areas as well as rural areas. Since the concentration time is short and the flood flows increase urgently in urban stream basin, the chances of damages become large once heavy storm occurs. A decision support system for flood forecasting and warning in urban stream is developed as an alternative to alleviate the damages from heavy storm. It consists of model base management system based on ANFIS (Adaptive Neuro Fuzzy Inference System), database management system with real time data building capability and user friendly dialog generation and management system. Applying the system to the Tanceon river basin, it can forecast and warn the stream flows from the heavy storm in real time and alleviate the damages.

Parameter Sensitivity Analysis of SWAT Model for Prediction of Pollutants Fate in Joman River Basin (조만강 유역의 오염물질 거동 예측을 위한 SWAT 모형의 매개변수 민감도 분석)

  • Kang, Deok-Ho;Kim, Tae-Won;Kim, Young-Do;Kwon, Jae-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.787-790
    • /
    • 2008
  • The SWAT(Soil and Water Assesment Tool) is a relatively large scale model for the complicated watershed or river basin. The model was developed to predict the effect of land management practices on water, sediment and agricultural chemical yields in large complex watershed with varying soils, land use and management conditions over long periods of time. Usually streams are divided into urban stream and natural stream in accordance with the development level. In case of urban stream, according to urbanization, as impermeable areas are increasing due to the change of land use condition and land cover condition, dry stream phenomenon at urban stream is rapidly progressed. In this study, long term run-off simulations in urban stream are performed by using SWAT model. Especially, the model is applied in small scale water shed, Joman River basin. The optimization by the sensitivity analysis is also performed for the model parameter estimations.

  • PDF

Assessing the Habitat Potential of Eurasian Otter (Lutra lutra) in Cheonggye Stream Utilizing the Habitat Suitability Index (서식지 적합성 지수를 이용한 청계천 수달의 서식지 평가)

  • In-Yoo Kim;Kwang-Hun Choi;Dong-Wook W. Ko
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.2
    • /
    • pp.140-150
    • /
    • 2023
  • The Eurasian otter (Lutra lutra) is an apex predator of the riparian ecosystem. It is a keystone and an indicator species; consequently, its presence suggests a sustainable water environment. Otter is a keystone species as a predator at the top of the food web in the aquatic environment and an indicator species representing the health of the aquatic environment. Although Eurasian otters disappeared from the Han River urban water system because of anthropogenic activities like habitat destruction, poaching, and environmental pollution in the 1980s, the species were sighted in the Cheonggye Stream, Jungrang Stream, and Seongnae Stream, which are urban sections of the Han River, in 2016 and 2021. Therefore, it is pertinent to assess the habitat potential in the area for conservation and management measures to ensure its permanent presence. However, existing studies on otter habitats focused on natural rivers and reservoirs, and there is a limit to applying them to habitats artificially confined habitats in narrow spaces such as tributaries in urban areas of the Han River. This study selected the Cheonggye Stream, an artificially restored urban stream, to evaluate its potential as a habitat for Eurasian otters in urban water environments using the habitat suitability index (HSI). The HSI was calculated with selected environment attributes, such as the cover, food, and threat, that best describe the L. lutra habitat. According to the results, the confluence area of Seongbuk Stream and Cheonggye Stream and the confluence area of Cheonggye Stream and Jungnang Stream were suitable otter habitats, requiring appropriate conservation efforts. The HSI model suggests a valuable method to assess the habitat quality of Eurasian otters in urban water environments. The study is crucial as it can help rehabilitate the species' populations by identifying and managing potential Eurasian otter habitats in highly urbanized areas of the Han River basin and its tributaries.

Application of LID Methods for Sustainable Management of Small Urban Stream Using SWMM (SWMM 모델을 이용한 지속 가능한 도시 소하천 관리를 위한 LID 기법의 적용 방안 연구)

  • Han, Yanghui;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.691-697
    • /
    • 2014
  • Though the upper stream basin area of Gwanpyung-Cheon in Daejeon, Korea is protected as Green Belt Zone, the stream is under constant environmental pressure due to current agricultural practices and infrastructure development in its basin area. To develop appropriate integrated water resources management plan for the stream, it is necessary to consider not only water quality problems but also water quantity aspect. In this study, Storm Water Management Model (SWMM) was calibrated and validated with sets of field measurements to predict for future water flow and water quality conditions for any rainfall event. While flow modeling results showed good agreement by showing correlation coefficient is greater than 0.9, water quality modeling results showed relatively less accurate levels of agreements with correlation coefficient between 0.67 and 0.87. Hypothetical basin development scenarios were developed to compare effect on stream water quality and quantity when Low Impact Development (LID) technologies are applied in the basin. The results of this study can be used effectively in decision making processes of urban development Gwanpyung-Cheon area by comparing basin management alternatives such as LID methods.

Suggestions for Ecological Stream Restoration (생태하천 복원 방안)

  • Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.59-68
    • /
    • 2007
  • Urban streams have been severely degraded with wastewater and concrete structure over a prolonged period. The Chonggyecheon Restoration Project recovered a stream in the downtown Seoul with landscaping, plantings and bridges after the cover concrete and elevated asphalt road were removed. The project has been criticized partly because it is not an ecological restoration but rather the development of an urban park with an unnaturally straight flowing stream, artificial building structures, and artificial water pumping from the Han River. Nevertheless, the public have praised the project and almost 100,000 visitors per day come to see the reeds, catfish, and ducks. The stream restoration project is attractive to central and regional government decision makers because it increases the public concern of landscape amenity. Several projects such as Sanjichon and Kaeumjungchon are on going and proposed. These projects have a common and different respect in scope and procedure. The Chonggyecheon project in the process of environmental impact assessment (EIA) and prior environmental review system (PERS) reviewed the environmental impacts before development. Kaeumjungchon in the PERS and Sanjichon without EIA and PERS are reviewed. EIA and PERS systems contribute to checking the ecological sustainability of the restoration projects. A stream restoration project is a very complex task, so an integrated approach from plan to project is needed for ecologically sound restoration. Ecological stream restoration requires 1) an assessment of the entire stream ecosystem 2) establishing an ecologically sound management system of the stream reflecting not only benefits for people but also flora and fauna; 3) developing the site-specific design criteria and construction techniques including habitat restoration, flood plains conservation, and fluvial management; 4) considering the stream watershed in land use plan, EIA, PERS, and strategic environmental assessment (SEA). Additionally the process needs to develop the methodologies to enhance stakeholder's participation during planning, construction, and monitoring.