• Title/Summary/Keyword: Urban Sewage

Search Result 197, Processing Time 0.028 seconds

Environmental Health Strategies in Korea (우리 나라의 환경정책 방향)

  • 조병극
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 1992
  • Since 1960's along with industrialization and urbanization, economic growth has been . achieved, however, at the same time, environmental condition has been seriously deteriorated. . Currently, volume of wastewater has been increasing at annual rate of 7% in sewage and 20% in industrial wastewater. However, the nation's sewage treatment serves only 33% of the municipal wastewater as of 1991. Major portion of air pollutants comes from combustion of oil and coal which comprise 81% of total energy use and emission gases from motor vehicles increasing at an accelerated rate. It is known that Korea generates the highest amount of waste per capta. Nevertheless, it is not sufficient to reduce the volume of waste by means of resources recovery and recycling. Recognizing the importance of global environmental problems such as ozone layer depletion, global warming and acid rain, international society has been making various efforts since the 1972 Stockholm conference. In particular, it is expected that the Rio conference which has adopted the Rio declaration and Agenda 21 will form a crucial turning point of the emerging new world order after the Cold War confrontation. To cope with such issues as domestic pollution and global environmental problems, the fundamental national policy aims at harmonizing "environmental protection and sustainable development". The Ministry of Environment has recently set up a mid-term comprehensive plan which includes annual targets for environmental protection. According to the government plan, gradual improvement of various environmental conditions and specific measures to achieve them is planned in time frame. Additional sewage treatment plants will be constructed in urban areas with the target to treat 65% of the nation's municipal sewage by 1996. Supply of clean fuels such as LNG will also be expanded starting from large cities as a cleaner substitute energy for coal and oil. In parallel with expansion of LNG, emphasis will be placed on installation of stack monitoring system. Due to the relatively limited land, government's basic policy for solid waste treatment is to develop large scale landfill facilities rather than small sized ones. Thirty three regional areas have been designated for the purpose of waste management. For each of these regions, big scale landfill site is going to be developed. To increase the rate of waste recycling the government is planning to reinforce separate collection system and to provide industries with economic incentives. As a part of meeting the changing situation on global environmental problems after UNCED, and accommodation regulatory measures stipulated in the global environmental conventions and protocols, national policy will try to alter industrial and economic structure so as to mitigate the increasing trends of energy consumption, by encouraging energy conservation and efficiency. In this regard, more attention will be given to the policy on the development of the cleaner technology. Ultimately, these policies and programs will contribute greatly to improving the current state of national public health.

  • PDF

Re-development of Waterway system in Nihombashi River

  • Ito, Kazumasa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2190-2199
    • /
    • 2009
  • Nihombashi is located in the central area of Tokyo, Japan. Tokyo has been the capital in Japan since the Edo period, which started approximately 400 years ago, and has accepted a variety of cultures, human resources, businesses for the last 400 years. This has resulted in building up the present prosperity. The Sumida River, one of the symbols of Tokyo and its tributaries including the Kanda River and the Nihombashi River, flows through the Nihombashi district. The river and tributaries used to benefit to the City of Edo. Due to the economic development and the industrial growth in Tokyo, however, they were polluted and lost their functions. In 1960s, approximately 40 years ago, the Sumida River became so dirty that local citizens kept away from it. The Nihombashi River was covered with an expressway, which was obscuring the river view. Since 1970s, local communities have proposed to rehabilitate rivers in Tokyo successively, and have proceeded with measures for river floods, improvement of sewage systems and construction of water purification facilities. Consequently, the quality of the river water was considerably improved in 1990. The stagnant rivers were turned into ones that local citizens were physically able to come close by. Today, restoring of the environment and the appearance of the city in the old days, Nihombashi district has been proposed as a model city of the future, which is alive with history and culture and harmonizing with rivers. The concept is "To Create, To Reserve, To Restore." This paper introduces a case study of the urban development, in which the local communities and public authorities collaborated with and proposed a brand-new style of the urban city harmonizing with the environment.

  • PDF

도시 소하천 개발에 따른 유출 변화량의 모의기법에 관한 연구

  • 김성원;조정석
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.451-460
    • /
    • 1998
  • The objectives of this study Is to evaluate the total runoff yield, peak flow and peak flow travel time depending on the urbanization, return period and rainfall patterns at the downstream of Manchon urban watershed in TaeGu City. SWM(Storm Water Management Model) is used for runog analysis based on 5 different steps of urbanization and 4 different types of Hufrs quartile according to 8 return periods. It is analyzed that the order of total runoff yield according to raiun patterns is Huffs 4, Huffs 2. Huffs 3 and Huffs 1 quartile, that of peak flow magnitude is Huffs 2, Huffs 1, Huffs 4 and Huffs 3 quartile at present development ratio. under the 60, 70, 80 and 90ft of urbanization to the 50% of urbanization by means of the rainfall patterns, the mean Increasing ratio of total runoff yield for each case is 4.55, 11.43, 16.07 and 20.02%, that of peak flow is 5.82, 13.61, 17.15 and 18.83%, the mean decreasing ratio of peak flow travel time Is 0.00, 2.44, 5.07 and 6.26%, the mean increasing ratio of runoff depth Is 4.51, 11.42, 16.02 and 20.05% respectively. the mean increasing ratio of total runoff yield by means of each and 19.71%. Therefore, as the result of this study. it can be used for principal data as to storm sewage treatment and flood damage protection planning in urban small watershed.

  • PDF

Integration of Total Pollution Load Management System and Environmental Impact Assessment related System (수계 오염총량관리제와 환경영향평가제도의 통합운영방안)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.359-367
    • /
    • 2003
  • The total pollution load management system of watershed has been implemented upon Special Law pertaining to the Han River Watershed Water Quality Improvement and Residents Support, Special Law pertaining to the Nakdong River Watershed Water Management and Residents Support, Special Law pertaining to the Youngsan River Watershed Water Management and Residents Support, and Special Law pertaining to the Seomjin River Watershed Water Management and Residents Support in Korea since 2002. But many other similar systems with total pollution load management system of watershed are being operated separately or independently, even though its purpose is nearly same with those of the total maximum pollutants load management in Law on Water Quality Environmental Protection, environmental impact assessment(EIA) in Law of Impact Assessment on Environment, Transportation and Disaster and Pre-environmental assessment of Environmental Policy Act. Therefore the contents of total pollution load management system of watershed and many other related systems could be overlapped and at some times have inconsistency among them. This study suggests first the integrated operation of total pollution load management system of watershed, EIA, pre-environmental assessment, urban planning, and sewage planning and secondly EIA system development by integration of EIA and pre-environmental assessment and strategic environmental assessment(SEA).

Construction of Resource Recovery System for Organic Wastes (유기성 폐기물의 자원화 체제구축에 관한 연구)

  • 양재경;최경민
    • Journal of Korea Technology Innovation Society
    • /
    • v.2 no.2
    • /
    • pp.290-308
    • /
    • 1999
  • In this study a system for the treatment or recyling of organic wastes from both urban and rural area was recommended. It was developed based on the resource recovery system regarding human being by four tectnologies; forage, methane production, high-grade composting and complete decomposition. High quality compost can be produced by combining several kind of wastes produced from urban and agricultural areas. High quality compost must possess not only general characteristics of ordinary compost, but also a superior ability to improve the soil properties and must contain more nutrients for plant. Cedar chips were recommended as the main bulking agent to adjust moisture contents and air permeability. Charcoal and zeolite can be used not only as the second bulking agent but also as fertilizer for improve the soil amendment. Complete decomposition of organic wastes is defined by organic matter being completely converted to $CO_2$ and water. All the input water was evaporated by the heat produced through the oxidation of organic matter, In the present study, the complete treatments were successfully achieved for Shochu wastewater, swine wastes, thickened excess sewage sludge, wastes produced by Chinese restaurant and anaerobic digested sludge. First of all, recycling center of organic wastes should be established for the protect the environments and effective recovery of organic resources. This may means the way to derive the recovery of human value.

  • PDF

A study of Assessment for Internal Inundation Vulnerability in Urban Area using SWMM (SWMM을 이용한 도시지역 내수침수 취약성 평가)

  • Shon, Tae-Seok;Kang, Dong-Ho;Jang, Jong-Kyung;Shin, Hyun-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.105-117
    • /
    • 2010
  • The topographical depressions in urban areas, the lack in drainage capability, sewage backward flow, road drainage, etc. cause internal inundation, and the increase in rainfall resulting from recent climate change, the rapid urbanization accompanied by economic development and population growth, and the increase in an impervious area in urban areas deteriorate the risk of internal inundation in the urban areas. In this study, the vulnerability of internal inundation in urban areas is analyzed and SWMM model is applied into Oncheoncheon watershed, which represents urban river of Busan, as a target basin. Based on the results, the representative storm sewers in individual sub-catchments is selected and the risk of vulnerability to internal inundation due to rainfall in urban streams is analyzed. In order to analyze the risk and vulnerability of internal inundation, capacity is applied as an index indicating the volume of a storm sewer in the SWMM model, and the risk of internal inundation is into 4 steps. For the analysis on the risk of internal inundation, simulation results by using a SMMM model are compared with the actual inundation areas resulting from localized heavy rain on July 7, 2009 at Busan and comparison results are analyzed to prove the validity of the designed model. Accordingly, probabilistic rainfall at Busan was input to the model for each frequency (10, 20, 50, 100 years) and duration (6, 12, 18, 24hr) at Busan. In this study, it suggests that the findings can be used to preliminarily alarm the possibility of internal inundation and selecting the vulnerable zones in urban areas.

Real-time flood prediction applying random forest regression model in urban areas (랜덤포레스트 회귀모형을 적용한 도시지역에서의 실시간 침수 예측)

  • Kim, Hyun Il;Lee, Yeon Su;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1119-1130
    • /
    • 2021
  • Urban flooding caused by localized heavy rainfall with unstable climate is constantly occurring, but a system that can predict spatial flood information with weather forecast has not been prepared yet. The worst flood situation in urban area can be occurred with difficulties of structural measures such as river levees, discharge capacity of urban sewage, storage basin of storm water, and pump facilities. However, identifying in advance the spatial flood information can have a decisive effect on minimizing flood damage. Therefore, this study presents a methodology that can predict the urban flood map in real-time by using rainfall data of the Korea Meteorological Administration (KMA), the results of two-dimensional flood analysis and random forest (RF) regression model. The Ujeong district in Ulsan metropolitan city, which the flood is frequently occurred, was selected for the study area. The RF regression model predicted the flood map corresponding to the 50 mm, 80 mm, and 110 mm rainfall events with 6-hours duration. And, the predicted results showed 63%, 80%, and 67% goodness of fit compared to the results of two-dimensional flood analysis model. It is judged that the suggested results of this study can be utilized as basic data for evacuation and response to urban flooding that occurs suddenly.

Studies for the Sustainable Management of Oyster Farms in Pukman Bay, Korea: Estimate of Primary Production

  • Jeong, Woo-Geon;Cho, Sang-Man;Lee, Sang-Jun
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.111-117
    • /
    • 2009
  • To develop sustainable management strategies for oyster farms in Pukman Bay, Korea, we estimated primary production using a numerical model. Because oysters are filter feeders, estimations of primary production (PP) are essential in developing management strategies. The daily PP ranged from 0.07 to 1.5 gC/$m^2$/d and showed significant spatial variations. The spatial distribution of PP was strongly associated with hydrodynamic features, and distinct patterns were observed in three different regions. In the inner bay, high PP was directly influenced by urban and agricultural sewage. The middle part of the bay had low PP, whereas PP in the outer area was high. PP was relatively low during the main oyster growth season, from late autumn to early winter. These findings represent important information for developing a management model for oyster farms in Pukman Bay.

Enumeration and Activity of Methanogenic Microorganisms of th Anaerobic Digestion Process

  • Lee, Kwang-Ho
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.115-126
    • /
    • 1991
  • The anaerobic digester with sludge from sewage treatment plant was operated in the laboratory for two year to investigate the enumeration and activity of methanogenic microorganisms. In this experimental study, the effects of HRT on the degradation characteristics of organic materials and on the number of methanogenic bacteria produced were investigated. By making the media with the repeated wxperiment, the number and activity of methanogenic bacteria were measured. The increase of the removal rate of organic acid in the digester was oberved at HRT of 2 days. The total number of methane forming bacteria estimated by the MPN method showed 2.3 $\times$ $ at HRT of 3 days, 7$\times$$ of 5 days and 7.9$\times$$ $/ml of 10 days. The optimum incubation time for measuring the number of methanogenic bacteria was found as more than four weeks. The PMA revealed 161ml CH$/l day at HRT of 10 days and the PUA 290mg COD/l day. At the incubation time 4.3 days, the maximum value of CH$ *59.1%) was found. At this time, $ was found as 15.3% and $ 25.6%.

  • PDF

Study on the Cheonggyecheon through the hydrological monitoring and GIS (수문관측 및 GIS를 이용한 청계천 모니터링 연구)

  • Jeong, Chang-Sam;Bae, Deg-Hyo;Kim, Mun-Mo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1464-1468
    • /
    • 2007
  • The restoration project of Cheonggyecheon was conducted to creates the refreshing water-friendly environment in the downtown Seoul. It already have passed almost 2 years after restoration. This project changed environment of Cheonggyecheon dramatically, so historic hydrological data became useless. There are not so many hydrological data to manage and control this newly restored urban stream. The main purpose of this study is collecting and analysing the hydrological data of Cheonggyecheon. At first, we analysed the mechanism of Cheonggyecheon discharge using the sewage design maps and some GIS data. We also monitored the water levels and discharges of 5 main points of Cheonggyecheon. Rating curves of these 5 points were derived. There were 249 blocks of water gates which were located at both sides of bank. We also monitored the behaviors of these water gates. Through the these monitorings, some equations were derived to give useful information to the manager of Cheonggyecheon.

  • PDF