In this study, we developed the system that can collect and store environmental disaster data into the database and use it for environmental disaster management by converting structured and unstructured documents such as images into electronic documents. In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. Environmental disaster information is one of important elements of disaster cycle. Environment disaster information management refers to the act of managing and processing electronic data about disaster cycle. However, these information are mainly managed in the structured and unstructured form of reports. It is necessary to manage unstructured data for disaster information. In this paper, the intelligent generation approach is used to convert handout into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored into the disaster database system. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle. The expected effect of this research will be able to apply it to smart environmental disaster management and decision making by combining artificial intelligence technologies and historical big data.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.16
no.6
/
pp.67-78
/
2017
Traffic congestion cost is increasing annually. Specifically congestion caused by the CDB traffic contains more than a half of the total congestion cost. Recent advancement in the field of Big Data, AI paved the way to industry revolution 4.0. And, these new technologies creates tremendous changes in the traffic information dissemination. Eventually, accurate and timely traffic information will give a positive impact on decreasing traffic congestion cost. This study, therefore, focused on developing both recurrent and non-recurrent congestion prediction models on urban roads by adopting Recurrent Neural Network(RNN), a tribe in machine learning. Two hidden layers with scaled conjugate gradient backpropagation algorithm were selected, and tested. Result of the analysis driven the authors to 25 meaningful links out of 33 total links that have appropriate mean square errors. Authors concluded that RNN model is a feasible model to predict congestion.
This paper is the result of the researches and the field surveys of the villages and the dwellings of Korean immigrants in Yien-Pien area, north-eastern China. This study aims to persue both of the origin and the process of development of their settlements and dwelling types from late 19C to the present. Their processes are too complex to analysis by single view-point. I have eyes to interprete them from three pionts; 1)correspondences between the dwelling types and the econo-political history of their region, 2)cultural assimilation with the native dwelling types, and 3)the direction of their modernization with the economical development of modern China. Three village types have been pioneered; 1)the villages of indivisual immigration, 2)the villages of planned group immigration, and 3)the villages of socilistic reform villages of 1) were composed of organic village patterns and various shaped dwelling lots on the sloped site; villages both of 2) and 3), gird patterns and uniformed lots on open fields. Historically, villages of 1) were pioneered before 1931; villages of 2), 1936-1945; villages of 3), from 1945. Each of dwelling types had strong relations with the village types to which it belonged. Before 1931, dwellings were built up based on so called "Ham-buk dwelling type" which was dominent in north-eastern Korea. In the era of gruop-immigration, various dwelling types were flew into Yen-Pien from southern Korea. In modern China, their southern types were changed into Yen-Pien type as similar as Ham-book type. After 1945, with the Great leap Forward and the Cultural Revolution, as communization of indivisual properties and reorganization of rural communities, each of dwellings became smaller and simpler in aspects of scales as well as functions. There are two types in Yen-Pien dwellings, those are 'single-file' and 'double-file' type. Three sub-types of latter arc 'six-bays', 'eight-bays', and rarely 'ten-bays'. The most common element of all types is Chong-ju-k'an; which is large room with heated floor, openig to kitchen. Now, modern dwellings of Korean immigrants are changing their spatial compositions, materials, and structures. With cultural assimilation as well as modernization, especially in urban areas, they are compelled to accept the elements of Chinese dwellings. But the spatial element of "Chong-ju-k'an", which is the core element of Yen-Pien dwelling type, never fade away nor is changed.
In response to the recent 4th industrial revolution, the demand for 3D object models in the latest fields of digital twin, autonomous driving, and VR/AR, as well as the existing fields such as city, construction, transportation, and energy has increased significantly. It is expected that the demand for 3D object models with various precision from LOD1 to LOD4 will increase more and more in various industry fields. However, the Ministry of Land, Infrastructure and Transport, and the local government and the private sector have partially built 3D object models of different precisions for some specific regions because of the huge cost. Therefore, this study proposes a feasible plan that can solve the cost problem in generating 3D object models for the whole territory. For our purpose, we first analyzed usage, demand, generation technology and generation cost for 3D object models. Afterwards, we proposed LOD3 model generation plan for all territory using automatic 3D object model generation technology based on image matching. Additionally, we supplemented the proposed plan by using LOD4 generation plan for landmarks and LOD2 generation plan non-urban area. In the near future, we expect this would be a great help in establishing a feasible and effective 3D object model generation plan for the whole country.
As part of the digital era, a digital twin that simulates the weak part of a product by performing a stress test that reduces the lifespan of some expensive equipment that cannot be done in reality by accurately moving the real world to virtual reality is being actively used in the manufacturing industry. Due to the development of IoT, the digital twin, which accurately collects data collected from the real world and makes it the same in the virtual space, is mutually beneficial through accurate prediction of urban life problems such as traffic, disaster, housing, quarantine, energy, environment, and aging. Based on its action, it is positioned as a necessary tool for smart city construction. Although digital twin is widely applied to the manufacturing field, this study proposes a smart city model suitable for the 4th industrial revolution era by using it to smart cities and increasing citizens' safety, welfare, and convenience through the proposed model. In addition, when a digital twin is applied to a smart city, it is expected that more accurate prediction and analysis will be possible by real-time synchronization between the real and virtual by maintaining realism and immediacy through real-time interaction.
Recently, in the field of water resource engineering, interest in predicting time series water levels and flow rates using deep learning technology that has rapidly developed along with the Fourth Industrial Revolution is increasing. In addition, although water-level and flow-rate prediction have been performed using the Long Short-Term Memory (LSTM) model and Gated Recurrent Unit (GRU) model that can predict time-series data, the accuracy of flow-rate prediction in rivers with rapid temporal fluctuations was predicted to be very low compared to that of water-level prediction. In this study, the Paldang Bridge Station of the Han River, which has a large flow-rate fluctuation and little influence from tidal waves in the estuary, was selected. In addition, time-series data with large flow fluctuations were selected to collect water-level and flow-rate data for 2 years and 7 months, which are relatively short in data length, to be used as training and prediction data for the LSTM and GRU models. When learning time-series water levels with very high time fluctuation in two models, the predicted water-level results in both models secured appropriate accuracy compared to observation water levels, but when training rapidly temporal fluctuation flow rates directly in two models, the predicted flow rates deteriorated significantly. Therefore, in this study, in order to accurately predict the rapidly changing flow rate, the water-level data predicted by the two models could be used as input data for the rating curve to significantly improve the prediction accuracy of the flow rates. Finally, the results of this study are expected to be sufficiently used as the data of flood warning system in urban rivers where the observation length of hydrological data is not relatively long and the flow-rate changes rapidly.
Jeong, Ho Jeong;Kim, Keun-Wook;Kim, Na-Gyeong;Chang, Won-Jun;Jeong, Won-Oong;Park, Dae-Yeong
Journal of Digital Convergence
/
v.20
no.5
/
pp.463-476
/
2022
After industrialization in the past, the automobile industry has continued to grow centered on internal combustion engines, but is facing a major change with the recent 4th industrial revolution. Most companies are preparing for the transition to electric vehicles and autonomous driving. Therefore, in this study, topic modeling was performed based on LDA algorithm by collecting 4,002 domestic papers and 68,372 overseas papers that contain keywords related to CASE (Connectivity, Autonomous, Sharing, Electrification), which represent future automobile trends. As a result of the analysis, it was found that domestic research mainly focuses on macroscopic aspects such as traffic infrastructure, urban traffic efficiency, and traffic policy. Through this, the government's technical support for MaaS (Mobility-as-a-Service) is required in the domestic shared car sector, and the need for data opening by means of transportation was presented. It is judged that these analysis results can be used as basic data for the future automobile industry.
Korean Journal of Construction Engineering and Management
/
v.23
no.3
/
pp.116-127
/
2022
Recently, the smart city market based on the 4th industrial revolution is rapidly expanding worldwide and is being promoted in various ways. Korea has promoted various smart city public and private partnership projects, but there were limits to the activation of smart city public and private partnership projects due to insufficient enactment and revision of laws, public-oriented ordering method, and lack of private execution capacity. Therefore, this study intends to suggest key success factors for each stage of smart city public and private partnership projects through the analysis of the order status of the smart city national pilot city and the analysis of previous research. Through this, it is expected that it will be possible to eliminate various types of risks that may occur in the domestic smart city public and private partnership projects and contribute to revitalizing the smart city public and private partnership projects.
The demand for spatial information in the era of the 4th Industrial Revolution is expanding Additionally, interest in attribute data related to geography or location is increasing. In the field of spatial information, spatial information policies and services tailored to the public can be provided through linkage and integration with new attribute data, and these data are resources for this purpose. In order to meet this expanding and diverse demand for spatial information utilization, it is necessary to develop technologies for linking and utilizing various attribute information such as public data. In this study, we aim to present a technology development strategy for linking and integrating attribute data and spatial information through a review of theories related to data linkage and integration, the current status of data on public data portals, and existing prior research. As a result, it was suggested that the data identifier of the attribute data to be linked should be used to develop linkage technology between spatial information and attribute data, and an attribute data linkage process that can be used when designing a prototype for technology development was presented.
Journal of the Korean Association of Geographic Information Studies
/
v.27
no.1
/
pp.29-40
/
2024
Recently, the technology of autonomous driving, one of the core of the fourth industrial revolution, is developing, but sensor-based autonomous driving is showing limitations, such as accidents in unexpected situations, To compensate for this, HD-map is being used as a core infrastructure for autonomous driving, and interest in the public and private sectors is increasing, and various studies and technology developments are being conducted to secure the latest and accuracy of HD-map. Currently, NGII will be newly built in urban areas and major roads across the country, including the metropolitan area, where self-driving cars are expected to run, and is working to minimize data error rates through quality verification. Therefore, this study analyzes the spatial relationship of reference objects in the attribute structuring process for rapid and accurate renewal and production of HD-map under construction by NGII, By applying the attribute input automation methodology of the reference object in which spatial relations are established using the library of open source-based PyQGIS, target sites were selected for each road type, such as high-speed national highways, general national highways, and C-ITS demonstration sections. Using the attribute automation tool developed in this study, it took about 2 to 5 minutes for each target location to automatically input the attributes of the spatial relationship reference object, As a result of automation of attribute input for reference objects, attribute input accuracy of 86.4% for high-speed national highways, 79.7% for general national highways, 82.4% for C-ITS, and 82.8% on average were secured.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.