• Title/Summary/Keyword: Urban Monitoring

Search Result 920, Processing Time 0.032 seconds

Determination of the number of storm events monitoring considering urban stormwater runoff characteristics (도시지역의 강우유출수 특성 분석을 통한 적정모니터링 횟수 도출)

  • Choi, Jiyeon;Na, Eunhye;Kim, Hongtae;Kim, Jinsun;Kim, Yongseck;Lee, Jaekwan
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.515-522
    • /
    • 2017
  • This study investigated the runoff characteristics containing NPS pollutants in urban areas and estimated the optimal number of storm events to be monitored. 13 residential areas, 8 commercial areas, 9 transportation areas and 11 industrial areas were selected to be monitored located in urban areas. Monitoring was performed from 2008 to 2016 with a total of 632 rainfall events. As a result, it was found that commercial area needs priority NPS management compared to other landuses because the commercial area has high runoff coefficient and NPS pollutant EMC compared with other landuses. The annual monitoring frequency for each landuse was estimated to be 11 to 14 times for industrial area, 12 to 14 times for transportation area, 11 to 13 times for commercial area and 22 to 25 times for residential area. Even with the use of accumulated monitoring data for several years, there is still high probability of uncertainty due to high error in some pollutant items, and it is necessary to establish monitoring know-how and data accumulation to reduce errors by continuous monitoring.

Application of operating vehicle load to structural health monitoring of bridges

  • Rafiquzzaman, A.K.M.;Yokoyama, Koichi
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.275-293
    • /
    • 2006
  • For health monitoring purpose usually the structure is instrumented with a large scale and multichannel measurement system. In case of highway bridges, operating vehicle could be utilized to reduce the number of measuring devices. First this paper presents a static damage detection algorithm of using operating vehicle load. The technique has been validated by finite element simulation and simple laboratory test. Next the paper presents an approach of using this technique to field application. Here operating vehicle load data has been used by instrumenting the bridge at single location. This approach gives an upper hand to other sophisticated global damage detection methods since it has the potential of reducing the measuring points and devices. It also avoids the application of artificial loading and interruption of any traffic flow.

HSP70 and HSC70 gene Expression in Chironomus Tentans (Diptera, Chironomidae) larvae Exposed to Various Environmental Pollutants: Potential Biomarker for Environmental Monitoring

  • Lee Sun Mi;Choi Jin Hee
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.1
    • /
    • pp.32-39
    • /
    • 2005
  • In order to identify potential biomarkers of environmental monitoring, we evaluated heat shock genes expressions as effects of various environmental pollutants (nonylphenol, bisphenol-A, 17a­ethynyl estradiol, bis(2-ethylhexyl)phthalate, endosulfan, paraquat dichloride, chloropyriphos, fenitrothion, cadmium chloride, lead nitrate, potassium dichromate, benzo[a]pyrene and carbon tetrachloride) on larvae of aquatic midge Chironomus tentans (Diptera, Chironomidae). Heat shock protein 70 gene expression increased in most of chemicals treated larvae compared to control. The response was rapid and sensitive to low chemical concentrations but not stressor specific. In conjunction with stressor specific biomarkers, heat shock protein 70 gene expression in Chironomus might be developed for assessing exposure to environmental stressors in the fresh water ecosystem. Considering the potential of Chironomus larvae as biomonitoring species, heat shock gene expression has a considerable potential as a sensitive biomarker for environmental monitoring in Chironomus.

  • PDF

Forest Fire Monitoring System Using Remote Sensing Data

  • Hwangbo, Ju-Won;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.747-749
    • /
    • 2003
  • For forest fire monitoring in relatively cool area like Siberia, design of Decision Support System (DSS) is proposed. The DSS is consisted of three different algorithms to detect potential fires from NOAA AVHRR image. The algorithm developed by CCRS (Canada Center for Remote Sensing) uses fixed thresholds for multi-channel information like one by ESA (European Space Agency). The algorithm of IGBP (International Geosphere Biosphere Program) involves contextual information in deriving fire pixels. CCRS and IGBP algorithms are rather liberal compared to more conservative ESA algorithm. Fire pixel information from the three algorithms is presented to the user. The user considers all these information in making decision about the location fire takes place.

  • PDF

Performance Analysis of Bridge using Structural Health Monitoring: Seong-Su Bridge Case-study

  • Kaloop, Mosbeh R.;Ban, Woo Hyun;Hu, Jong Wan
    • Journal of Urban Science
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • The performance evaluation of existing structures is important to study the safety of those structures with changing the loads over the lifetime of structures. Therefore, this study aims at evaluating the Seong-Su bridge, Seoul, Korea, using structural health monitoring (SHM) system. The static and dynamic tests are used to assess the behavior of the bridge. The statistical and wavelet analyses are used to demonstrate the behavior of the bridge in the time and frequency domains. The previous SHM results are used to assess the bridge performance. The results of this study show that the bridge performance under static and dynamic loads is safe in time and frequency domains.

A Study on the Urban Growth Change using Satellite Imagery Data (위성영상자료를 활용한 도시성장변화에 관한 연구)

  • Kim, Yoon-Soo;Kim, Jung-Hwan;Jung, Eung-Ho;Ryu, Ji-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.81-90
    • /
    • 2002
  • Remote Sensing has been very useful tool in monitoring of cities and updating of GIS database compare to traditional methods due to its benefit; wide range covering on low cost and advanced data collection. However it had come to a limited method in limited researches because of its relatively poor spatial resolution in scanning. Recently launched satellites are able to produce improved imageries, and new commercial services have been commenced for the use of general public with higher spatial resolution up to $1m{\times}1m$. This study tackled a potential use of these improved satellite imageries in urban planning based on the Multi-temporal satellite imagery with particular reference to monitoring on urban areas, for example urbanization and its expanding. i) Portion of individual features and elements in each pixel of satellite imagery was computed based on 'Endmember' of targeted elements. ii) Urbanized areas were categorized based on the 'Fraction imagery' derived from the 'SMA algorithm'. iii) Alterations and expanding of urban areas were identified based on the Multi-temporal satellite imageries. Tested method showed a strong potential to produce more advanced monitoring skills of urban areas.

  • PDF

System Design for a Urban Energy Monitoring and Visualization Environment Using Ubiquitous Sensor Network and Social Sensor Networking (Ubiquitous Sensor Network 및 Social Sensor Networking을 이용한 도시 에너지 모니터링 가시화 시스템 설계)

  • Choe, Yoon;Jang, Myeong-Ho;Kim, Sung-Ah
    • Journal of the HCI Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.7-14
    • /
    • 2010
  • Urban Data collected through Sensor Network is becoming crucial to understand and analyse a city. Thus, the Ubiquitous Sensor Network builds the foundation of the u-City development. This research aims to develop an energy monitoring application with an intuitive visualization environment which integrates energy usage information on top of urban geospatial information. Such a system will be able to facilitate effective energy supply plan at the early stages of urban planning, and eventually to encourage citizens to conserve energy by giving them real time monitoring information in an easy to understand visual environment. The system provides multiple layers of energy-related information coupled with the geospatial information layer in order to accommodate multiple viewpoints. On the other hand, the system provides logical Level of Detail control based on urban spatial information hierarchy. We defined the system concept and functions, and designed the data structure and the methods of information visualization. This paper presents the visualization methods, data structure, interactions scenarios which combines spacial information, E-GIS data and the energy related sensor data. Furthermore this research tries to introduce the concept of Social Sensor Networking to enhance the monitoring quality.

  • PDF

Optimum Flow and Pollution Load Monitoring Time of Combined Sewers of Urban Watersheds during Dry Weather (비강우시 도시 합류식 하수도의 오염부하 산정을 위한 최적관측시간 산정연구)

  • Choi, Yong-Hun;Won, Chul-Hee;Park, Woon-Ji;Seo, Ji-Yeon;Shin, Min-Hwan;Lee, Chan-Ki;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.9-14
    • /
    • 2009
  • Flow and pollution load were monitored at 2 combined sewer outlets (C-1 and C-2) of urban watersheds during dry weather from September, 2004 to April, 2006 for 20 months. The objectives were to investigate the diurnal variation of flow and pollutant load and to find the proper sampling time that could measure representative flow and pollutant load. Pollution load closed to the average daily load at C-1 could be measured at 00:00 hour and by the mean of 15:00 and 18:00 hour measures, and 15:00 and 21:00 hour measures, respectively. In addition at C-2, it was 21:00 hour and the mean of 15:00 and 18:00 hour measures. This study concluded that arbitrary sampling of flow and water quality could cause large errors in the estimation of urban pollution load and recommended that urban combined sewers should be monitored when flow and water quality showed daily average and concentration.

Integrity Monitoring for Drone Landing in Urban Area using Single Frequency Based RRAIM

  • Jeong, Hojoon;Kim, Bu-Gyeom;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.317-325
    • /
    • 2022
  • In this paper, we developed a single frequency-based RRAIM to monitor integrity of the UAM landing vertically in urban area with only low-cost single-frequency GPS receiver. Conventional dual-frequency RRAIM eliminates ionospheric delay through a combination of frequencies. In this study, ionospheric delay was directly modeled. Drift error of residual ionospheric delay is modeled using the previously studied result on ionospheric rates of change. To verify the performance of the proposed RRAIM algorithm, a simulation of vertical landing UAM in urban area was conducted. It was assumed that the protection level at the initial position was calculated through SBAS correction data. During vertical landing, integrity monitored by receiver alone without external correction data. In the 60 sec simulation, the protection level of the proposed RRAIM compared to the conventional RRAIM was calculated to be 140% due to the accumulated ionospheric delay error. Nevertheless, it was confirmed that the final vertical protection level meeting the requirements of LPV-200, which cannot be achieved with single frequency GPS receiver alone.

Satellite-based Drought Forecasting: Research Trends, Challenges, and Future Directions

  • Son, Bokyung;Im, Jungho;Park, Sumin;Lee, Jaese
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.815-831
    • /
    • 2021
  • Drought forecasting is crucial to minimize the damage to food security and water resources caused by drought. Satellite-based drought research has been conducted since 1980s, which includes drought monitoring, assessment, and prediction. Unlike numerous studies on drought monitoring and assessment for the past few decades, satellite-based drought forecasting has gained popularity in recent years. For successful drought forecasting, it is necessary to carefully identify the relationships between drought factors and drought conditions by drought type and lead time. This paper aims to provide an overview of recent research trends and challenges for satellite-based drought forecasts focusing on lead times. Based on the recent literature survey during the past decade, the satellite-based drought forecasting studies were divided into three groups by lead time (i.e., short-term, sub-seasonal, and seasonal) and reviewed with the characteristics of the predictors (i.e., drought factors) and predictands (i.e., drought indices). Then, three major challenges-difficulty in model generalization, model resolution and feature selection, and saturation of forecasting skill improvement-were discussed, which led to provide several future research directions of satellite-based drought forecasting.