• Title/Summary/Keyword: Urban Mining

Search Result 153, Processing Time 0.023 seconds

Study on Accident Prediction Models in Urban Railway Casualty Accidents Using Logistic Regression Analysis Model (로지스틱회귀분석 모델을 활용한 도시철도 사상사고 사고예측모형 개발에 대한 연구)

  • Jin, Soo-Bong;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.482-490
    • /
    • 2017
  • This study is a railway accident investigation statistic study with the purpose of prediction and classification of accident severity. Linear regression models have some difficulties in classifying accident severity, but a logistic regression model can be used to overcome the weaknesses of linear regression models. The logistic regression model is applied to escalator (E/S) accidents in all stations on 5~8 lines of the Seoul Metro, using data mining techniques such as logistic regression analysis. The forecasting variables of E/S accidents in urban railway stations are considered, such as passenger age, drinking, overall situation, behavior, and handrail grip. In the overall accuracy analysis, the logistic regression accuracy is explained 76.7%. According to the results of this analysis, it has been confirmed that the accuracy and the level of significance of the logistic regression analysis make it a useful data mining technique to establish an accident severity prediction model for urban railway casualty accidents.

An Analysis of the Research Trends for Urban Study using Topic Modeling (토픽모델링을 이용한 도시 분야 연구동향 분석)

  • Jang, Sun-Young;Jung, Seunghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.661-670
    • /
    • 2021
  • Research trends can be usefully used to determine the importance of research topics by period, identify insufficient research fields, and discover new fields. In this study, research trends of urban spaces, where various problems are occurring due to population concentration and urbanization, were analyzed by topic modeling. The analysis target was the abstracts of papers listed in the Korea Citation Index (KCI) published between 2002 and 2019. Topic modeling is an algorithm-based text mining technique that can discover a certain pattern in the entire content, and it is easy to cluster. In this study, the frequency of keywords, trends by year, topic derivation, cluster by topic, and trend by topic type were analyzed. Research in urban regeneration is increasing continuously, and it was analyzed as a field where detailed topics could be expanded in the future. Furthermore, urban regeneration is now becoming a regular research field. On the other hand, topics related to development/growth and energy/environment have entered a stagnation period. This study is meaningful because the correlation and trends between keywords were analyzed using topic modeling targeting all domestic urban studies.

Data Mining-Based Performance Prediction Technology of Geothermal Heat Pump System (지열 히트펌프 시스템의 데이터 마이닝 기반 성능 예측 기술)

  • Hwang, Min Hye;Park, Myung Kyu;Jun, In Ki;Sohn, Byonghu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.27-34
    • /
    • 2016
  • This preliminary study investigated data mining-based methods to assess and predict the performance of geothermal heat pump(GHP) system. Data mining is a key process of the knowledge discovery in database (KDD), which includes five steps: 1) Selection; 2) Pre-processing; 3) Transformation; 4) Analysis(data mining); and 5) Interpretation/Evaluation. We used two analysis models, categorical and numerical decision tree models to ascertain the patterns of performance(COP) and electrical consumption of the GHP system. Prior to applying the decision tree models, we statistically analyzed measurement database to determine the effect of sampling intervals on the system performance. Analysis results showed that 10-min sampling data for the performance analysis had highest accuracy of 97.7% over the actual dataset of the GHP system.

Evaluation of Water Quality Prediction Models at Intake Station by Data Mining Techniques (데이터마이닝 기법을 적용한 취수원 수질예측모형 평가)

  • Kim, Ju-Hwan;Chae, Soo-Kwon;Kim, Byung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.705-716
    • /
    • 2011
  • For the efficient discovery of knowledge and information from the observed systems, data mining techniques can be an useful tool for the prediction of water quality at intake station in rivers. Deterioration of water quality can be caused at intake station in dry season due to insufficient flow. This demands additional outflow from dam since some extent of deterioration can be attenuated by dam reservoir operation to control outflow considering predicted water quality. A seasonal occurrence of high ammonia nitrogen ($NH_3$-N) concentrations has hampered chemical treatment processes of a water plant in Geum river. Monthly flow allocation from upstream dam is important for downstream $NH_3$-N control. In this study, prediction models of water quality based on multiple regression (MR), artificial neural network and data mining methods were developed to understand water quality variation and to support dam operations through providing predicted $NH_3$-N concentrations at intake station. The models were calibrated with eight years of monthly data and verified with another two years of independent data. In those models, the $NH_3$-N concentration for next time step is dependent on dam outflow, river water quality such as alkalinity, temperature, and $NH_3$-N of previous time step. The model performances are compared and evaluated by error analysis and statistical characteristics like correlation and determination coefficients between the observed and the predicted water quality. It is expected that these data mining techniques can present more efficient data-driven tools in modelling stage and it is found that those models can be applied well to predict water quality in stream river systems.

Case Analysis for Introduction of Machine Learning Technology to the Mining Industry (머신러닝 기술의 광업 분야 도입을 위한 활용사례 분석)

  • Lee, Chaeyoung;Kim, Sung-Min;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study investigated use cases of machine learning technology in domestic medical, manufacturing, finance, automobile, urban sectors and those in overseas mining industry. Through a literature survey, it was found that the machine learning technology has been widely utilized for developing medical image information system, real-time monitoring and fault diagnosis system, security level of information system, autonomous vehicle and integrated city management system. Until now, the use cases have not found in the domestic mining industry, however, several overseas projects have found that introduce the machine learning technology to the mining industry for improving the productivity and safety of mineral exploration or mine development. In the future, the introduction of the machine learning technology to the mining industry is expected to spread gradually.

Stress and wear distribution characteristics of cutterhead for EPB shield tunneling in cobble-boulders

  • Zhiyong Yang;Xiaokang Shao;Hao Han;Yusheng Jiang;Jili Feng;Wei Wang;Zhengyang Sun
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • Owing to the high strength and abrasive characteristics of cobble-boulders, cutters are easily worn and damaged during shield tunneling, making construction inefficient. In the present work, the stress on the ripper and scraper on the cutterhead was analyzed by the PFC3D-FLAC3D coupling model of shield tunneling to get insight into the performance of the cutterhead for cutting underground cobble and boulders. The numerical calculation results revealed that the increase in trajectory radius leads to a rising stress on the cutters, and the stress on the front cutting surface is greater than that on the back of the cutters. Moreover, the correlation between cutter wear and stress is revealed based on field measurement data. The distribution of the cutter stress is consistent with the cutter wear and breakage characteristics in actual construction, in which more extensive cutter stress is exhibited, extreme cutter wear appears, and more cutter breakage occurs. Finally, the relationship between the cutterhead opening area's layout and cutter wear distribution was investigated, indicating that the cutter wear extent is the most severe in the region where the radial opening ratio dropped sharply.

Development of Image Processing Software for Satellite Data

  • Chi, Kwang-Hoon;Suh, Jae-Young;Han, Jong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.361-369
    • /
    • 1998
  • Recently, the improvement of on-board satellite sensors covering hyperspectral image sensors, high spatial resolution sensors provide data on earth in diverse aspect. The application field relating remotely sensed data also varies depending on what type of job one wants. The various resolution of sensors from low to extremely high is also available on the market with a user defined specific location. The expense to purchase remote sensed data is going down compare to the cost it need past few years ago in terms of research or private use. Now, the satellite remote sensed data is used on the field of forecasting, forestry, agriculture, urban reconstruction, geology, or other research field in order to extract meaningful information by applying special techniques of image processing. There are many image processing packages available worldwide and one common aspect is that they are expensive. There need to be a advanced satellite data processing package for people who can not afford commercial packages to apply special remote sensing techniques on their data and produce valued-added product. The study was carried out with the purpose of developing a special satellite data processing package which covers almost every satellite produced data with normal image processing functions and also special functions needed on specific research field with friendly graphical user interface (GUI). And for the people with any background of remote sensing with windows platform.

  • PDF

The Evaluation on Thermal Window High-Tight Composition of Sliding Door and Open Door (여닫이와 미닫이를 복합한 고기밀성 단열창호 성능평가)

  • Choi, Dong-Hyuk;Choi, Gyoung-Seok;Kang, Jae-Sik;Lee, Seung-Eon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.724-729
    • /
    • 2009
  • Generally the window of the building is an objective of mining and having a distant view and also for a circulation it will can open and shut because becomes the structure insulation, the meat detailed drawing it does a very difficult portion, it is. To reduce the loss of the energy which leads, to an air conditioning energy and an expense increase problem the color which the interior furniture and the clothing due to the augmentation and the corpse ultraviolet rays of the unpleasant feeling which is caused by with the transient one solar energy influx which leads the window will burn, it joins in the window and it confronts and the novel solution is demanded.

  • PDF

Topic Model Analysis of Research Trend on Spatial Big Data (공간빅데이터 연구 동향 파악을 위한 토픽모형 분석)

  • Lee, Won Sang;Sohn, So Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.64-73
    • /
    • 2015
  • Recent emergence of spatial big data attracts the attention of various research groups. This paper analyzes the research trend on spatial big data by text mining the related Scopus DB. We apply topic model and network analysis to the extracted abstracts of articles related to spatial big data. It was observed that optics, astronomy, and computer science are the major areas of spatial big data analysis. The major topics discovered from the articles are related to mobile/cloud/smart service of spatial big data in urban setting. Trends of discovered topics are provided over periods along with the results of topic network. We expect that uncovered areas of spatial big data research can be further explored.

TBM considerations for soft-ground tunnels

  • Rozgonyi T. G.;Kieffer D. S.;Maidl U.;Bald Cernal
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.42-51
    • /
    • 2003
  • The global demand for underground facilities has increased substantially in the past decades, and a substantial number of underground projects have had to deal with challenging ground conditions in urban environments. Particularly challenging are weak and unstable water bearing soils. Advancements in shielded TBM tech-nology have led to significant improvements regarding the ability to control ground deformations in soft ground. Nonetheless, ground collapse may occur even when the most advanced TBM designs are employed if unexpected adverse ground conditions are encountered or if insufficient stabilizing pressure is transferred to the tunnel face. This paper reviews common approaches for face stability and face pressure transmission calculations, and provides an overview of some of the latest technological developments and considerations for soft ground TBM applica-tions.

  • PDF