• 제목/요약/키워드: Urban Energy

검색결과 1,294건 처리시간 0.026초

Application of Energy Dissipation Technology in High-Rise Buildings

  • Hu, Da-Zhu;Zhang, Xiao-Xuan;Li, Guo-Qiang;Sun, Fei-Fei;Jin, Hua-Jian
    • 국제초고층학회논문집
    • /
    • 제10권2호
    • /
    • pp.137-147
    • /
    • 2021
  • The principle of energy dissipation technology is to dissipate or absorb the seismic energy input through the deformation or velocity change of dampers installed in the main structure of high-rise buildings, so as to reduce the seismic response of the buildings. With the development of energy dissipation technology, recognized as an effective and new measurement for reducing seismic effects, its application in high-rise buildings has become more and more popular. The appropriate energy dissipation devices suitable for high-rise buildings are introduced in this paper. The effectiveness of energy-dissipation technology for reducing the seismic response of high-rise buildings with various structural forms is demonstrated with a number of actual examples of high-rise buildings equipped with various energy dissipation devices.

공공의무화 제도에 따른 신재생에너지 보급 실태 분석 (The Supply Status Analysis of New Renewable Energy Based on Public Obligation System)

  • 서상현;이용호;김형진;조영흠;황정하
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.220-225
    • /
    • 2011
  • Based on the supply status statistics of new renewable energy according to public obligation system, current status of overall application centered on solar heat, solar ray, and geothermal heat as energy sources that can be applied to buildings may be analyzed as follows. (1) After the public obligation system, the investment costs on the total construction costs by years were between 5.21% and 7.12%: they were 7.12% in 2004, where the system was initially implemented; and they were gradually declined from 2005 to 2011, 5.76% in average. The ratio of equipment investment per energy sources in the total construction costs was 5.9%, which was slightly more than the obliged ratio. The order of investment costs per energy source was solar ray, geothermal heat, and solar heat. (2) Among the 1,433 sites in the plan of new renewable energy installation based on the public obligation system, "for cultural & social use" was most in target institution, and facilities for education & research was most in use classification, followed by public working, culture & rally, and sports. The number of facilities applied according to the case for planning installation per use classification of the target institution was between 1.1 and 1.5, or 1.4 in average of energy source. Conclusively, the authors of this study investigated overall current status of new renewable energy supply from the analysis of statistic data, and it may be needed of further supplementation of various examinations by visiting investigation and interviews with practitioners based on classification of use of target institutions.

  • PDF

도심 임대아파트의 에너지 및 상수 소비 특성에 관한 연구 (An Analysis on the Characteristics of Energy and Water Consumption in Urban Rental Apartment)

  • 서윤규;김주영;홍원화
    • 한국주거학회논문집
    • /
    • 제20권6호
    • /
    • pp.39-46
    • /
    • 2009
  • It has been a serious problem to consume the energy of apartment while increasing to use of heating & cooling System because of residence environmental upgrades. Great attention has been shown to the problem of the rental apartment, so there are few reports of energy consumption about the rental apartment in korea. To solve the lack of housing, our country has supplied an enormous volume of apartments, and these days it occupies 75% of our buildings. As apartments occupy most of our housings, the rate of energy usage from them are also high. On this, setting apartment energy reduction as a target, by researching the actual conditions of energy consumption and drawing a basis data, we can apply this as a way of saving energy, rationalization of the scale of energy supply facilities and a standard when planning facilities. To grasp the present condition of energy usage of the urban rental apartment, this research analysed the use of electricity, gas and water monthly and annually of a rental apartment that is located in Daegu. The results showed that in 2003 the electricity usage was 1,198MWh but 1,315MWh in 2007, which means 9% of electricity usage increases every year. The average of water usage was $85,072\;m^2$ per year and typical energy consumption unit was $604.2\;MJ/m^2$ on $74.4\;m^2$ of area and $448.8\;MJ/m^2$ on $105.8\;M^2$. By showing the usage of energy and water of the urban rental apartment, understanding the tendency and preparing an typical energy consumption unit standard through this research, apartments should use energy more efficiently.

대전지역 건물음영을 고려한 PV 최적각도 산정 (Estimation of Optimal Angle for PV Panels Considering Building's Shadow in Daejeon)

  • 이정태;김현구;강용혁;윤창열;김창기;김진영;김보영
    • 한국태양에너지학회 논문집
    • /
    • 제40권3호
    • /
    • pp.43-52
    • /
    • 2020
  • By blocking irradiance, shadows cast by high-rise buildings in urban areas can reduce the power generation efficiency of PV panels installed on low-rise buildings. As the conventionally installed PV panel is not suitable for the urban environment, which is unfavorable for power generating, a more radical solution is required. This study aims to help solve this problem by estimating the optimal PV panel angle. Using the proposed method, the optimal PV angle was calculated by considering shadows that could be cast by nearby buildings throughout the year, and the correlation between solar shading and elevation angle was discovered based on the calculated data.

도시환경에서 방사성물질 오염에 따른 선량평가모델 (A Model for Radiological Dose Assessment in an Urban Environment)

  • 황원태;김은한;정효준;서경석;한문희
    • Journal of Radiation Protection and Research
    • /
    • 제32권1호
    • /
    • pp.1-8
    • /
    • 2007
  • 도시지역의 방사능 오염으로 거주민의 피폭영향을 평가할 수 있는 모델 METRO-K를 개발하였다. 모델의 특성으로 1) 실험 또는 경험자료를 사용하기 때문에 수학식이 간단하여 이해가 쉬울 뿐 아니라 계산에 필요한 변수의 수가 적으며 2) 도시환경을 구성하는 5가지 기본표면 만을 사용하여 복잡하고 다양한 주변 환경을 쉽게 구성할 수 있으며 3) 각기 다른 오염 표면으로 인한 선량을 평가함으로써 표면마다 적합한 제염대책을 수립하는데 용이하다. 피폭자의 특정 위치에서 각기 다른 오염표면으로부터 받게 되는 선량은 감마에너지와 오염 표면별 공기커마 값을 데이터 라이브러리로 만들어 평가에 이용하였다. 유럽 도시지 역의 4가지 대표적 거주형태 에 대한 공기커마 값을 사용하여 우리나라 도시지역의 7가지 대표적 주거형태에 적합하도록 공기커마 값을 조합하여 적용하였다. 장기간 방사성물질의 누설을 고려하여 하루 단위의 핵종별 공기중 농도, 강우량, 핵종의 화학적 형태 구성분율이 입력되면 침적 후 시간에 따른 각기 다른 표면에서의 공기중 흡수선량률과 피폭자의 거주 위치에 따른 인체 선량률이 평가된다. 아파트 밀집지역에 대한 가상 오염 시나리오의 적용결과 피폭자의 거주위치 뿐 아니라 피폭자가 거주하는 주변 환경에 따라 인체 선량률은 확연한 차이를 나타냈다.

A Study on Sustainable Greenspace based on Urban Remodeling Design of an Old Apartment Building

  • Myung Sik Lee;Seung Ryeol Min
    • 국제초고층학회논문집
    • /
    • 제12권2호
    • /
    • pp.179-193
    • /
    • 2023
  • It is undeniable that urban greenspace is the soul of a city. Conventional urban greenspace such as parks, community gardens, playgrounds etc. located within a city reduce the negative effects of pollution, play a major role in the survival of the urban ecosystem, and promote healthy lifestyles. Today, 55% of the world's population lives in urban areas, which is expected to increase to 68% by 2050. Projections show that urbanization and the gradual migration to urban areas combined with the fast growth of the world's population, could add another 2.5 billion people to urban areas by 2050 and almost 90% of this increase will take place in Asia(UN, 2018). As a result, many plots in the cities are and will continue to be occupied with buildings to provide residential support to the increased population. This will dangerously decrease urban greenspaces. Moreover, worldwide, food crisis, energy crisis, and social crisis is posing a great threat to the existence of mankind. Additionally, the COVID - 19 has introduced a new lifestyle where from work culture to community configuration has drastically transformed. In this scenario, residential buildings will have to serve more than just providing privacy and shelter. As urban greenspaces are being occupied by concrete residential buildings, these buildings will have to compensate for the percentage of urban green they are destroying and the issues they are imposing in the process. The goal of this thesis is to design, architecturally define and, categorize comprehensive 'sustainable Greenspace'(S.G.S) for the multi-family housing scenario. These will be different than the conventional green (veranda, rooftop green) we commonly see in residential buildings. An old, dilapidated apartment building will be the target of remodeling to fulfill the purpose of this thesis.

Analysis of plane frame structure using base force element method

  • Peng, Yijiang;Bai, Yaqiong;Guo, Qing
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.11-20
    • /
    • 2017
  • The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.

도시철도차량의 회생제동력 분담 효과 분석 (Analysis of the Regenerative Braking Effect to the Urban Transit Vehicles)

  • 우종혁;이주
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1900-1906
    • /
    • 2016
  • Recent energy efficiency policy of green growth for stable power supply is required. Urban transit vehicles is limited to reduce the use of power without reducing the number of runs. Accordingly, when urban rail vehicles is braking, the occurrence of regenerative power is systemically maximized for the purpose of saving energy. As a result when it is braking, the generated power efficiently is used and looking for a way to reduce the electrical energy. In this paper, the brake control system of the Subway Line 3 is analyzed the effect to meet the required regenerative braking produced electricity through minimizing air braking force of service braking.

The Effect of Building Morphology on Sea Breeze Penetration over the Kanto Plain - Analysis of Mean Kinetic Energy Balance of Moving Control Volume along Sea Breeze -

  • Sato, Taiki;Ooka, Ryozo;Murakami, Shuzo
    • 국제초고층학회논문집
    • /
    • 제1권2호
    • /
    • pp.73-80
    • /
    • 2012
  • In order to use sea breezes to counter the heat island phenomena, i.e. to promote urban ventilation, it is necessary to clarify the effect of building morphology and height on large-scale wind fields. In this study, the sea breeze in the vicinity of the Kanto Plain in Japan is simulated using a mesoscale meteorological model incorporating an urban canopy model, and the inland penetration of sea breezes is accurately reproduced. Additionally, a mean kinetic energy balance within a domain (Control Volume; CV) moving along the sea breeze is analysed. From the results, it is clarified that the sea breeze is interrupted by the resistance and turbulence caused by buildings at the centre of Tokyo. The interruption effect is increased in accordance with the height of these buildings. On the other hand, adverse pressure gradients interrupt in the internal region.

도시 철도용 사이리스터 듀얼 컨버터 시스템의 3병렬 운전 제어 기법에 관한 연구 (A Study on Three Parallel Operation Control Algorithm of Thyristor Dual Converter System for Urban Railway Substation)

  • 김성안;한성우;조윤현
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.459-467
    • /
    • 2017
  • An urban railway power substation consists of three thyristor dual converters. Two converters are connected to up and down trolley line to supply the electric energy or feed the regenerative energy back to the distribution. When the two converters break down, the remaining converter is used in an emergency. One thyristor dual converter system (TDCS) manages the energy of two or three railway stations. If the TDCS fails, the trains stop operating. To solve the problem, this paper proposes the three parallel operation control algorithm of thyristor dual converter system using the emergency converter. The broken TDCS can be replaced by the emergency converter in other TDCS. The effectiveness of this proposed control is verified by simulation.