• Title/Summary/Keyword: Urban Energy

Search Result 1,294, Processing Time 0.026 seconds

A Case Study of Electricity Usage Monitoring for Deterioration and Economic Analysis of Main Equipment in University Laboratory

  • Park, Jun-Young;Lee, Chun-Kyong;Park, Tae-Keun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.706-707
    • /
    • 2015
  • Our country is aiming at 30% reductions in building energy consumption accounting for 39% of the total energy consumption by 2020[1]. For this purpose, the government is developing and applying the Building Energy Management System (hereinafter, referred to as "BEMS", Smart plug, etc.) while the researches on new renewable energy development. BEMS, which is applied with focus on large buildings, is inducing energy management of the entire building through energy measurement and data management, but considering its economic efficiency, it's very difficult to apply BEMS to small & medium-size buildings. Hereupon, this study intends to implement the case analysis of deterioration and economic efficiency of major equipment in buildings on the basis of electricity consumption which has been measured targeting small & medium-size buildings for a certain period by taking into account that equipment deterioration is a contributor to the increase in energy consumption.

  • PDF

A Study on the Methodology of Building Energy Consumption Estimation and Energy Independence Rate for Zero Energy City Planning Phase (제로에너지시티 계획을 위한 건물에너지 수요 예측 방법론 개발 및 자립률 산정에 대한 연구)

  • Bae, Eun-ji;Yoon, Yong Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.29-40
    • /
    • 2019
  • In response to the rapid climate change, in order to save energy in the field of buildings, the country is planning not only zero energy buildings but also zero energy cities. In the Urban Development Project, the Energy Use Plan Report is prepared and submitted by predicting the amount of energy demand at the planning stage. However, due to the activation of zero-energy buildings and the increase in the supply of new and renewable energy facilities, the energy consumption behavior of buildings in the city is changing from the previous ones. In this study, to estimate urban energy demand of Zero Energy City, building energy demand forecasts based on "Passive plans for use of energy based primary energy consumption", "Actual building energy usage data from Korea Appraisal Board" and "data from Certification of Building Energy Efficiency Rating" as well as demand forecast according to existing "Consultation about Energy Use Plan Code" were calculated and then applied to Multifunctional Administrative City 5-1 zone to compare urban total energy demand forecasts.

High-Rise Urban Form and Environmental Performance - An Overview on Integrated Approaches to Urban Design for a Sustainable High-Rise Urban Future

  • Yang, Feng
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.2
    • /
    • pp.87-94
    • /
    • 2016
  • High-rise as a building typology is gaining popularity in Asian mega-cities, due to its advantages in increasing volumetric density with limited land resources. Numerous factors contribute to the formation of high-rise urban form, from economical and institutional, environmental to socio-political. Environmental concerns over the impact of rapid urbanization in developing economies demand new thought on the link between urban environment and urban form. Outdoor and indoor climate, pedestrian comfort, and building energy consumption are all related to and impacted by urban form and building morphology. There are many studies and practices on designing individual "green" high-rise buildings, but far fewer studies on designing high-rise building clusters from the perspective of environmental performance optimization.. This paper focuses on the environmental perspective, and its correlation with the evolution of the high-rise urban form. Previous studies on urban morphology in terms of environmental and energy performance are reviewed. Studies on "parameterizing" urban morphology to estimate its environmental performance are reviewed, and the possible urban design implications of the study are demonstrated in by the author, by way of a microclimate map of the iconic Shanghai Xiao Lujiazui CBD. The study formulates the best-practice design guidelines for creating walkable and comfortable outdoor space in a high-rise urban setting, including proper sizing of street blocks and building footprint, provision of shading, and facilitating urban ventilation.

Characteristics of Urban Regeneration Reflected upon SymbioCity Concepts : Focused on Sweden and Germany Examples (SymbioCity관점에서 본 도시재생의 계획적 특성 고찰 : 스웨덴과 독일 사례를 중심으로)

  • Lee, Sunghee;Kim, Jongkon
    • Land and Housing Review
    • /
    • v.8 no.4
    • /
    • pp.275-283
    • /
    • 2017
  • The aim of this study was to present the direction of sustainable urban regeneration through the study of planning characteristics of urban regeneration reflected upon 'SymbioCity' concepts. This study was carried out through theoretical review and case study. In the theoretical review, the theory of 'SymbioCity', one of Sweden's representative urban development models linked to the concept of sustainable development, was reviewed and the framework was derived based on this theory. The framework of this study was finally derived from 'energy', 'ecology and environment', and 'historical and cultural resources'. The case study was conducted by selecting three urban regeneration projects($V{\ddot{a}}strahamnen$ BO01, Royal seaport and HafenCity Hamburg) in Sweden and Germany. Based on the results of case analysis, the direction of sustainable urban regeneration is as follows. First, in terms of energy, we should pay attention to synergy between energy and waste and energy production. Second, in terms of ecology and environment, plans should be made to maximize the use of existing resources in order to conserve natural resources and reduce energy consumption and economic costs. Third, in terms of historical and cultural resources, it is necessary to consider ways to preserve and recycle existing buildings with historical and cultural values. Finally, for the successful application of the planning elements, it is necessary to find the most appropriate application method through steady R&D in the country or project unit.

Development of Energy Storage System for Urban Transit System (도시철도용 에너지저장시스템 개발에 관한 연구)

  • Lee, Hanmin;Kim, Gildong;Joung, Euijin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.162.2-162.2
    • /
    • 2010
  • The energy storage system is considered to be one of the useful devices for energy storing and recycling. the energy storage system can save energy cost and stabilize the system voltage. This paper presents the development of two energy storage systems. One is 750V system for light rail system. the other is 1500V system for heavy rail system.

  • PDF

The Core Urban Design Strategies of Tall Building - Low Carbon Community

  • Liu, Enfang;Fan, Wenli;Pan, Jianing;Li, Jianqiang
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • Tall building has some controversial aspects with low carbon city, but it is still a sensible choice for the metropolitan city. This paper aims to develop holistic urban design strategies to minimize impacts on the environment, increase energy efficiency and improve the quality of living in tall building communities by utilizing tall building characteristics. It puts forward the concept of integrated tall building-low carbon community design from the perspective of urban design, and summarizes five core strategies: Temporal state based on energy use, Complementary energy use state based on functions, Spatial state based on regional environment features, Transportation state based on low-carbon lifestyle and Waste utilization state based on tall building characteristics. It also applies the strategies to a practical project. The results show that the proposed urban design strategies are available approaches to mitigate the side effects of tall building on low carbon city.

The Effect of Urban and Climate Characteristics on Energy Resilience - Focusing on Blackout Time - (도시 및 기후특성이 에너지 회복력에 미치는 영향 - 정전발생시간을 중심으로 -)

  • Lee, DongSung;Moon, Tae-Hoon
    • Journal of Korea Planning Association
    • /
    • v.54 no.4
    • /
    • pp.122-130
    • /
    • 2019
  • The purpose of this study is to analyze effect of climate and urban factors on energy resilience, and to explore policy alternatives to strengthen resilience of energy system. For this purpose, this study used extensive literature review on resilience studies and multiple regression analysis. In this study, blackout time was set as a dependent variable. And the independent variables were divided into climate and urban (robustness, countermeasure capacity) characteristics. As a result of the analysis, in terms of climate characteristics, maximum wind speed and cooling/heating degree-day have statistically significant impact on blackout time. With regard to urban characteristics, number of consumer, ratio of deteriorated housing and coast dummy variables have statistically significant impact on blackout time. And the ratio of government employees and road ratio were found to be the most influencing factors to shorten time taken to restore original level of electricity supply. Based on the study results, several policy suggestions to improve energy resilience were made such as continuous management of vulnerable areas and strengthening disaster response services. This study only considered engineering dimension of resilience. Further studies need to be approached on ecological & social-ecological dimension.

Analysis of Radiative Characteristics at Urban Area by Observation in Summer Season (하절기 도시의 지역별 장.단파복사 특성 분석과 해석)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.133-144
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1)In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2)The upper part of atmosphere layers in the urban are aabsorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3)The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and 1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas. (4)The net radiation of the rural was lower that of the urban. It was found that the energy in and outflow of the rural is easier than that of the urban. (5)The temperature variation for the long-wave radiation change of the rural showed more sensitive than that of the urban. It was came from the radiation characteristics of the surrounding environment and can be used as the important index to evaluate the thermal environment characteristic of urban.

The Relation of between the Architectural and Urban Form, Microclimate Factors and Buildings Energy Consumption (도시, 건축형태 및 미기후로 인한 건축물군의 에너지 소비량의 관계)

  • Lee, Gunwon;Jeong, Yunnam;Moon, Yoon-Deok
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.10
    • /
    • pp.923-934
    • /
    • 2019
  • This study investigates correlations between the impacts of urban and building form and microclimate on the energy consumption of buildings. It applies microscopic elements such as urban form, building form and character, and microclimate as factors in the energy consumption of buildings. To this end, the energy consumption of selected buildings in Seoul in August of 2017 was analyzed. Based on microscopic elements within a radius of 500 meters of 23 Automated Weather Station (AWS) measurement points selected by the Meteorological Office of the City of Seoul. With the exception of a few elements, the urban form and character elements demonstrate a significant relation to the energy consumption of buildings. It is also found that microclimate elements such as wind speed and humidity are pertinent to the energy consumption of buildings. It is helpful in that it suggests results for establishing more effective policies and strategies for enhancing the sustainability and resilience of cities.

Study on Estimation of Urban Anthropogenic Heat Generation (도시의 인공열 산정에 관한 연구)

  • 손은하;김유근;홍정혜
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.1
    • /
    • pp.37-47
    • /
    • 2000
  • The Urban thermal environment is influenced and modified in many ways. One modification is brought by the anthropogenic heat generation emitted from the combustion processes and the use of energy such as industrial, domestic and traffic procedure. The anthropogenic heat generation affect an the increase of urban temperature, the well-known urban heat islands. The study on the urban thermal environment needs a great deal of the statistic data about the inner-structure of urban, the contribution of different constructions and the traffic amount on urban thermal environment in finite region. In order to overtake a quantitative analysis of effect of the anthropogenic heat, a distribution map of the urban anthropogenic heat was made using hte data of the energy consumption used at the several constructions and traffic amount of vehicles in Pusan Metropolitan. Annual mean heat flux over the 4$\textrm{km}^2$ urbanized area in Pusan is 41.5W/$m^2$, ranging from 31.4W/$m^2$ in summertime to 59.5W/$m^2$ in wintertime and maximum diurnal anthropogenic heat generation is corresponding to 10% of irradiance during summertime.

  • PDF