• Title/Summary/Keyword: Urban Disaster

Search Result 797, Processing Time 0.027 seconds

Development and Application of Evaluation System for Disaster Prevention Ability of Urban Parks (도시공원 방재기능 평가체계 개발 및 적용)

  • Huang, Zhirui;Lee, Ai Ran
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.199-207
    • /
    • 2020
  • Against the backdrop of frequent weather disasters such as floods, droughts, and heat waves worldwide, urban parks should provide functions for the safety of urban residents as well as rest, culture, and ecological functions. In this study, a classification system for urban disaster prevention parks is proposed for the safety of the urbanites with the aim of securing a complex function in a green space in response to climate changes in the city. Analytical indicators were extracted through literature research, and the classification system was verified through on-site surveys of the target sites and interviews with those involved. The large class for evaluation was divided into three types: location, spatial composition, and disaster prevention complex facilities of urban parks; the direction of improvement was proposed for problems identified through empirical analysis.

The Analysis of Rainwater Storage Facility Project for the Urban Disaster Prevention in Busan and its Countermeasures (도시방재를 위한 부산지역 우수저류시설 설치사업의 분석과 대책)

  • Hwang, Jae-Yun
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2015
  • Recently, many cities have always been affected by large natural disasters such as floods and landslides. As climate change causes more frequent localized heavy rains exceeding the conveyance capacity of sewer, flood damage is expected to increase. For the sake of reducing the urban flood damage by changed rainfall, there has been many trials on installation of runoff-reducing facilities. Therefore, it was required to study about reasonable analysis and countermeasure of rainwater storage facility project for extending it. This study was to review the status of rainwater storage facility project for the urban disaster prevention in Busan, to find out problems, and to propose the countermeasure of rainwater storage facility project for the urban disaster prevention.

A Study on Estimation of Construction Wastes Units in Urban Development (도시개발지구내 건설폐기물 발생원단위 특성연구)

  • Kim, Sang-Keun;Chung, Ha-Ik;Kwon, Ki-Bum;Yu, Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1452-1455
    • /
    • 2008
  • In order to establish active and effective recycling plans on construction wastes, the study seeks to built unit generation data per construction waste types on each sector, prepare units data on urban construction waste generation and serve as meaningful data on the establishment of policies on construction waste recycling targeting urban regions. The significance of the study is on the establishment of construction waste recycling plan prior to generation, not as complementary measures on construction waste generated.

  • PDF

Status of Local Disaster Prevention by Regional Types - Focusing on Gangwon-do - (지역유형별 지역방재력에 관한 실태분석 - 강원도를 중심으로 -)

  • Kim, Kyoung-Nam;Kwon, Gun-Ju;Back, Min-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.33-46
    • /
    • 2010
  • The 14 cities and guns within Gangwon-do were divided into three regions (urban-rural-integrated type, urban type, and ruralcoastal type), and local voluntary disaster prevention organizations in those regions were surveyed as sample groups. As a result, the urban-rural-integrated type and the urban type were found to be lower than the rural-coastal type in all domains including recognition of disaster crisis, evacuation guidance, preparation of voluntary evacuation, maintenance of disaster prevention system, surveillance & guard, and information delivery. In particular, three types had higher information delivery but considerably lower preparation of voluntary evacuation. As for information delivery, foundations for rapid delivery of disaster information due to establishment and extension of systems for forecasting and warning of local governments were prepared, but as for preparation of voluntary evacuation, it is needed not only to perform consistent training and promotion for preparation for disasters for residents to accurately understand status of disasters but to take measures to secure safe places for evacuation beforehand.

Structural damage distribution induced by Wenchuan Earthquake on 12th May, 2008

  • Jia, Junfeng;Song, Nianhua;Xu, Zigang;He, Zizhao;Bai, Yulei
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.93-109
    • /
    • 2015
  • Based on the reconnaissance of buildings in Dujiangyan City during 2008 Wenchuan earthquake, China, structural damage characteristics and the spatial distribution of structural damage are investigated, and the possible reasons for the extraordinary features are discussed with consideration of the influence of urban historical evolution and spatial variation of earthquake motions. Firstly, the urban plan and typical characteristics of structural seismic damage are briefly presented and summarized. Spatial distribution of structural damage is then comparatively analyzed by classifying all surveyed buildings in accordance with different construction age, considering the influence of seismic design code on urban buildings. Finally, the influences of evolution of seismic design code, topographic condition, local site and distance from fault rupture on spatial distribution of structural damage are comprehensively discussed. It is concluded that spatial variation of earthquake motions, resulting from topography, local site effect and fault rupture, are very important factor leading to the extraordinary spatial distribution of building damage except the evolution of seismic design codes. It is necessary that the spatial distribution of earthquake motions should be considered in seismic design of structures located in complicated topography area and near active faults.

Nonlinear dynamics and failure wind velocity analysis of urban trees

  • Ai, Xiaoqiu;Cheng, Yingyao;Peng, Yongbo
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.89-106
    • /
    • 2016
  • With an aim to assess the wind damage to urban trees in more realistic conditions, the nonlinear dynamics of structured trees subjected to strong winds with different levels is investigated in the present paper. For the logical treatment of dynamical behavior of trees, material nonlinearities of green wood associated with tree biomechanics and geometric nonlinearity of tree configuration are included. Applying simulated fluctuating wind velocity to the numerical model, the dynamical behavior of the structured tree is explored. A comparative study against the linear dynamics analysis usually involved in the previous researches is carried out. The failure wind velocity of urban trees is then defined, whereby the failure percentages of the tree components are exposed. Numerical investigations reveal that the nonlinear dynamics analysis of urban trees results in a more accurate solution of wind-induced response than the classical linear dynamics analysis, where the nonlinear effect of the tree behavior gives rise to be strengthened as increasing of the levels of wind velocity, i.e., the amplitude of 10-min mean wind velocity. The study of relationship between the failure percentage and the failure wind velocity provides a new perspective towards the vulnerability assessment of urban trees likely to fail due to wind actions, which is potential to link with the practical engineering.

A Study on the Improvement of Urban Fire Simulation on Firebrand Scattering (불티의 성상을 고려한 도시화재 시뮬레이션 개선에 관한 연구)

  • Koo, In-Hyuk;Seo, Dong-Goo;Kim, Bong-Chan;Kwon, Young-Jin
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.67-72
    • /
    • 2015
  • Korea urbanized rapidly, and overpopulation with high growth of the economy has resulted in decrepit facilities scattered all cities. If there is a strong wind during a fire, the fire is rapidly spread by various factors. Korea cannot build a prediction model for urban fire combustion phenomena because there are no studies that physically explain the suitable flame phenomena for its buildings. This study built a model for the generation of fire brand and includes to scattering, fall, and ignition An experiment was done using the wind tunnel facilities of the Japanese Building Research Institute (BRI). The results were used to explain the behavior of fire brand, and reflected in the fire simulation model.

1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake

  • Zhao, Mi;Yin, Houquan;Du, Xiuli;Liu, Jingbo;Liang, Lingyu
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.173-194
    • /
    • 2015
  • Site response analysis is an important topic in earthquake engineering. A time-domain numerical method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary condition with the inputting boundary condition is developed to model the wave absorption and input effects of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the layer system with the artificial boundary condition is transformed equivalently into a 1D one along the vertical direction according to Snell's law. The resulting 1D problem is solved by the finite element method with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer matrix method with fast Fourier transform.

Two-dimensional water seepage monitoring in concrete structures using smart aggregates

  • Zou, Dujian;Li, Weijie;Liu, Tiejun;Teng, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.313-323
    • /
    • 2018
  • The presence of water inside concrete structures is an essential condition for the deterioration of the structures. The free water in the concrete pores and micro-cracks is the culprit for the durability related problems, such as alkali-aggregate reaction, carbonation, freeze-thaw damage, and corrosion of steel reinforcement. To ensure the integrity and safe operation of the concrete structures, it is very important to monitor water seepage inside the concrete. This paper presents the experimental investigation of water seepage monitoring in a concrete slab using piezoelectric-based smart aggregates. In the experimental setup, an $800mm{\times}800mm{\times}100mm$ concrete slab was fabricated with 15 SAs distributed inside the slab. The water seepage process was monitored through interrogating the SA pairs. In each SA pair, one SA was used as actuator to emit harmonic sine wave, and the other was used as sensor to receive the transmitted stress wave. The amplitudes of the received signals were able to indicate the water seepage process inside the concrete slab.

Pounding analysis of RC bridge considering spatial variability of ground motion

  • Han, Qiang;Dong, Huihui;Du, Xiuli;Zhou, Yulong
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1029-1044
    • /
    • 2015
  • To investigate the seismic pounding response of long-span bridges with high-piers under strong ground motions, shaking table tests were performed on a 1/10-scaled bridge model consisting of three continuous spans with rigid frames and one simply-supported span. The seismic pounding responses of this bridge model under different earthquake excitations including the uniform excitation and the traveling wave excitations were experimentally studied. The influence of dampers to the seismic pounding effects at the expansion joints was analyzed through nonlinear dynamic analyses in this research. The seismic pounding effects obtained from numerical analyses of the bridge model are in favorable agreement with the experimental results. Seismic pounding effect of bridge superstructures is dependent on the structural dynamic properties of the adjacent spans and characteristics of ground motions. Moreover, supplemental damping can effectively mitigate pounding effects of the bridge superstructures, and reduce the base shear forces of the bridge piers.