• Title/Summary/Keyword: Urban Air pollutants

Search Result 208, Processing Time 0.026 seconds

Factors Affecting the Morbidity Related to Respiratory Dieseases in Urban Korea (한국 도시의 만성호흡기 질환 이환율에 영향을 주는 요인)

  • Han, Sung-Hyun;Park, Jae-Sung;Seo, Seung-Hee;Yoon, Jee-Eun;Jee, Sun-Ha
    • Korea journal of population studies
    • /
    • v.28 no.2
    • /
    • pp.205-217
    • /
    • 2005
  • Purpose: To evaluate the factors affecting hospital utilization for respiratory diseases by ecological study design and GIS tool. To raise the social concern for respiratory disease by the result. Methods: Hospital admission data supported by national health insurance cooperation were transformed to spread sheet data format and combined with air monitoring dataset. Air pollution data were collected from the annual report of air monitoring published by Korea Ministry of Environment. Socioeconomic statistics including population density, age distribution, forest ratio etc.. were filed using Korea National Statistical Office database. Multiple linear regression analysis was performed to evaluate the factors affecting hospital utilization for respiratory diseases. Analytical unit was 52 cities. Results: The factors affecting hospital utilization for respiratory diseases were the proportion of population 60 years and over, seaside city, $O_3$ level, smoking rate. Conclusions: However, outdoor pollutants monitoring data and smoking rate have weakness in reflecting individual exposure. Further research is required to propose more illustrative means to evaluate causal relationship between air pollution and respiratory health effect factors.

Monitoring Ground-level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models (위성 자료와 수치모델 자료를 활용한 스태킹 앙상블 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho;Shin, Minso;Park, Seohui;Kim, Sang-Min
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1053-1066
    • /
    • 2020
  • Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.

NO2 and SO2 Reduction Capacities and Their Relation to Leaf Physiological and Morphological Traits in Ten Landscaping Tree Species (조경수 10개 수종에 있어 NO2, SO2 저감 능력과 잎의 생리적, 형태적 특성과의 관계)

  • Kim, Kunhyo;Jeon, Jihyeon;Yun, Chan Ju;Kim, Tae Kyung;Hong, Jeonghyun;Jeon, Gi-Seong;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.393-405
    • /
    • 2021
  • With increasing anthropogenic emission sources, air pollutants are emerging as a severe environmental problem worldwide. Accordingly, the importance of landscape trees is emerging as a potential solution to reduce air pollutants, especially in urban areas. This study quantified and compared NO2 and SO2 reduction abilities of ten major landscape tree species and analyzed the relationship between reduction ability and physiological and morphological characteristics. The results showed NO2 reduction per leaf area was greatest in Cornus officinalis (19.81 ± 3.84 ng cm-2 hr-1) and lowest in Pinus strobus (1.51 ± 0.81 ng cm-2 hr-1). In addition, NO2 reduction by broadleaf species (14.72 ± 1.32 ng cm-2 hr-1) was 3.1-times greater than needleleaf species (4.68 ± 1.26 ng cm-2hr-1; P < 0.001). Further, SO2 reduction per leaf area was greatest in Zelkova serrata (70.04 ± 7.74 ng cm-2 hr-1) and lowest in Pinus strobus (4.79 ± 1.02 ng cm-2 hr-1). Similarly, SO2 reduction by broadleaf species (44.21 ± 5.01 ng cm-2 hr-1) was 3.9-times greater than needleleaf species (11.47 ± 3.03 ng cm-2 hr-1; P < 0.001). Correlation analysis revealed differences in NO2 reduction was best explained by chlorophyll b content (R2 = 0.671, P = 0.003) and SO2 reduction was best described by SLA and length of margin per leaf area (R2 = 0.456, P = 0.032 and R2 = 0.437, P = 0.001, R2 = 0.872, P < 0.001, respectively). In summary, the ability of trees to reduce air pollutants was related to photosynthesis, evapotranspiration, stomatal conductance, and leaf thickness. These findings highlight effective reduction of air pollutants by landscaping trees requires comprehensively analyzing physiological and morphological species characteristics.

Characteristics of Stormwater Runoff with respect to Pavement Types (도로 포장방법에 따른 비점오염물질 유출특성 비교)

  • Kim, Cheolmin;Choi, Jiyeon;Lee, Jung Min;Cho, Hyejin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.423-429
    • /
    • 2014
  • Due to high imperviousness rates of the roads, various pollutants originated from vehicle activities and air depositions are accumulated on the road surfaces. The washed-off pollutants can deteriorate the water quality and destroy the aqua-ecosystems with their toxicity. Usually the roads are paved with asphalt and concrete, which can affect on the pollutant concentrations with different frictional forces. Therefore, this research is performed to evaluate the influences of different pavement type on discharged concentrations of pollutant. The results shows the first flush phenomenon was occurred on both pavement types. However, peak concentrations are higher in concrete pavement areas than asphalt pavement because concrete pavement has high contact area with vehicles. The EMCs(Event Mean Concentration) also shows high values in concrete paved roads. As a result of this research, it can be concluded the pavement type is also one of the important affecting factors on pollutant emissions from the roads.

Sustainable Land Use within a Limit of Environmental Carrying Capacity in Metropolitan Area, Korea (지속가능한 발전을 위한 환경용량의 산정과 토지이용형태 연구 - 수도권지역을 중심으로 -)

  • Moon, Tae-Hoon
    • Korean System Dynamics Review
    • /
    • v.8 no.2
    • /
    • pp.51-82
    • /
    • 2007
  • The purpose of this paper is exploring changes in land use pattern when considering environmental carrying capacity. A sustainable development requires a society to define sustainability constraints, environmental carrying capacity. Environmental carrying capacity can be defined as a level of human activity a region can sustain at a desired level of quality of environment. This concept of environmental carrying capacity can be applied to land use to explore sustainable land use pattern. Since land use pattern can affect environment in an important way, exploring sustainable land use pattern within the limit of environmental carrying capacity can suggest useful implications for a sustainable regional management and planning. For this purpose, this paper built the environmental carrying capacity land use model and applied it to the Metropolitan Area, Korea. System dynamics modeling methods was used to build the model. The model developed in this paper consisted of 6sectors; population, housing, industry, land, environment, and traffic sector. The model limits its main focus on the NO2 level as an indicator of quality of environment in Metropolitan Area. Box model was translated into system dynamics model and combined to urban dynamics model to estimate NO2 level, the maximum number of population, industry structure, housing and maximum amount of land use for industrial, housing, and green space that can sustain desirable NO2 level. Metropolitan area was divided into 16 areas and the model was applied to each area. Since NO2 is flowing in and out from each area, model was built to allow this transboundering nature of air pollutants. Based on the model estimation, several policy implications for a sustainable land use pattern was discussed.

  • PDF

Dispersion Characteristics of Odorous Elements from Nambu Wastewater Treatment Plant and a Nearby Streams in Busan (부산시 남부하수처리시설과 인근 하천에서 발생하는 악취물질 확산 특성)

  • Mun, Seong-Man;Lee, Hyung-Don;Cho, Sang-Won;Kang, Dong-Hyo;Park, Hae-Sik;Oh, Kwang-Joong
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.953-962
    • /
    • 2011
  • The covered stream of cities are considered an odor source. Also, the public do not want a wastewater treatment plant(WWTP) near their properties due to the emission of odor emanating from such sources, although they play an important role in urban development. The purpose of this study is to analyze the pattern distribution of the odorous compounds from the Nambu WWTP and Youngho stream in Busan. odor sampled four times were analyzed by instrumental analysis method and indirect olfactory method. The kinds of offensive odorous compounds examined are acetaldehyde, propion aldehyde, hydrogen sulfide, methyl mercaptan, dimethyl sulfide and ammonia. Also, Concentration of air pollutants has been calculated by ISCST3 models. At the result of this study, The Nambu WWTP releases sulfur compounds. And the major odorous were hydrogen sulfide (1,475 ppb) and acetaldehyde (95 ppb) at Youngho stream. The stink which residents feel will point out the Nambu WWTP mainly if the odor is removed with the improvement of a Youngho stream. Accordingly, we should pay more attention to appropriate components to processes in odor reducing plan at Nambu WWTP.

Variation Characteristics of TSP Ionic Compositions by Meteorological Phenomena in Jeju Island (기상현상에 따른 제주지역 TSP의 이온조성 변화 특성)

  • Ko, Hee-Jung;Kim, Won-Hyung;Lee, Seung-Hoon;Bu, Jun-Oh;Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.723-733
    • /
    • 2011
  • The ionic compositions were analyzed from the TSP samples collected at Gosan site in Jeju Island between 2000 and 2008, in order to examine the characteristics of atmospheric aerosols in accordance with the meteorological conditions. For the Asian Dust influence on the ionic compositions, the concentration ratios of $NH_4{^+}$, nss-${SO_4}^{2-}$, $NO_3{^-}$, and $K^+$ were about 1.2~2.3 during Asian Dust over Non-Asian Dust periods, noticeably that of nss-$Ca^{2+}$ was 6.8. Meanwhile the concentrations of nss-${SO_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ have increased as 1.8~4.4 times during the haze event periods, and 1.0~1.6 times during the fog and mist events. The ion balance has resulted that the anionic concentrations are relatively lower than the cationic concentrations, and the discrepancy appears more decidedly as a strong Asian Dust effect. The ammonium ion balance has shown that it exists as a mixture of $NH_4HSO_4$ and $(NH_4)_2SO_4$. The concentration ratios of nss-${SO_4}^{2-}/NO_3{^-}$ for Asian Dust, haze, fog-mist, and non-event periods were respectively 1.8, 5.9, 4.6, and 2.9, which were higher values compared to those in urban areas of China as well as other domestic regions. Especially, the high ratios of sulfur oxides could be presumed by the fact that the longrange transport of air pollutants from Asia continent might affect the atmospheric aerosols of Jeju Island.

Emission Characteristics of a Passing Two-stroke Scooter using at a Roadside Measurement (도로변 측정을 이용한 2행정 스쿠터의 대기오염물질 배출특성 연구)

  • Woo, Dae-Kwang;Lee, Seung-Bok;Bae, Gwi-Nam;Lim, Cheol-Soo;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.663-671
    • /
    • 2011
  • Although a scooter is a convenient transportation means for a short distance traveling with a light package in the congested urban center, it might be one of the significant sources of air pollutants to which many people can easily be exposed during its passing-by. In this paper, we measured concentrations of gases and particles emitted from a scooter at roadside with no other traffic. To understand the characteristics of scooter emissions with respect to driving speed (idling, 30 km/h) at the roadside, total particle number concentration, particle size distribution, average surface area of particles deposited in the alveolar region, and concentrations of black carbon, CO, and $NO_x$ were measured. The concentrations of the particle number, surface area of deposited particles, CO, and $NO_x$ were highly fluctuated in the scooter's idling condition. The trends of particle number concentration, CO, and $NO_x$ generation were similar to one another. When the scooter started to move, all of $NO_x$, CO and particle number concentrations increased and after it passed by at the speed of 30 km/h, the concentration peaks of the particles and gases appeared at the same time. Unimodal size distribution with ~70 and ~93 nm mode diameters was observed for the idling and cruising condition, respectively. From this work, we found that emission from a passing vehicle could be characterized using a roadside monitoring technique.

Environmental geochemistry of persistent organic pollutants in the Pearl River Delta

  • Peng Ping'an;Fu Jiamo;Sheng Guoying;Xiao Xianming;zhang Gan;Wang Xinming;Mai Bixian;Ran Rong;Cheng Fanzhong
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.8-10
    • /
    • 2002
  • POPs in sediments and soil in the PRD are comparable to or much higher than those reported in other regions. Some sites may be classified as POPs- polluted with high ecological risks. Large-scale land transform in the process of regional urbanization may facilitate the transfer of POPs in the soil to the sedimentary system by enhancing the soil run-off. Urban atmospheric PCBs in PRD are found to be less than some of the North American or European urbans, but PAHs are significantly higher. The center of the PRD has been the major source area of PAHs and organochlorine pesticides in the PRD. The northern part of the PRD serves as a regional sink for the air particulates and affiliated POPs.

  • PDF

Experiment on Reduction of Pollutants in Titanium Dioxide Photocatalytic Ventilation System (이산화티탄 광촉매 환기장치의 오염물질 저감 실험)

  • Song, Yong Woo
    • Land and Housing Review
    • /
    • v.13 no.2
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, titanium dioxide photocatalyst was applied to the ventilation system to reduce particulate matter and nitrogen oxides (NOx), which are representative indoor harmful substances. A reaction device capable of installing an ultraviolet lamp was designed and manufactured so that the pollutant decomposition effect of the titanium dioxide photocatalyst identified through previous studies could be applied indoors. The reaction device was used on the indoor ventilation system and applied to the Mock-Up test. As a result of the Mock-up test, the NOx reduction performance according to the change in air volume once per hour and five times per hour was confirmed. As a result, it was confirmed that as the number of ventilation increases, the NOx reduction time decreases proportionally, and the reduction performance increases.