• Title/Summary/Keyword: Uranium ore sandstone

Search Result 6, Processing Time 0.033 seconds

Pore structure evolution characteristics of sandstone uranium ore during acid leaching

  • Zeng, Sheng;Shen, Yuan;Sun, Bing;Zhang, Ni;Zhang, Shuwen;Feng, Song
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4033-4041
    • /
    • 2021
  • To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.

Pore structure characterization and permeability prediction of uranium-bearing sandstone based on digital core

  • Sheng Zeng;Yanan Zhang;Bing Sun;Qiue Cai;Bingyong Zeng;Yuan Shen;Xia Wen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.11
    • /
    • pp.4512-4521
    • /
    • 2024
  • The permeability of the ore-bearing layer is an important indicator affecting the in-situ leaching (ISL) of uranium-bearing sandstone, which is related to various factors such as pore shape, distribution, and size. In order to study the effect of pore structure on seepage in low-permeability uranium-bearing sandstone, CT scanning tests were conducted to create a 3D digital core based on scanning images and to calculate the fractal dimension using the box counting dimension method, which integrated fractal theory to define the core samples' pore structure. The permeability prediction was realized based on the porosity-permeability model and the fractal theory model. Results indicated that this type of sandstone is obviously characterized by pore connectivity, large differences in distribution, and strong microscopic inhomogeneity. The pores are dominated by micro- and nanopores, as well as small pores, accounting for 90 %; macropores are few in number, but the diameters of their single pores are large. The distribution of pore structure in this type of sandstone exhibits a good fractal characteristic; the three-dimensional fractal dimensionality is 2.044-2.310. The porosity-permeability model was established, and permeability prediction was realized by combining the fractal theory to provide theoretical support for determining the values of well field parameters in ISL.

Influence of burial conditions on the seepage characteristics of uranium bearing loose sandstone

  • Quan Jiang;Mingtao Jia;Yihan Yang;Qi Xu;Chuanfei Zhang;Xiangxue Zhang;Meifang Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1357-1371
    • /
    • 2024
  • To investigate the influence of different burial conditions on the seepage characteristics of loose sandstone in the leaching mining of sandstone uranium ore, this study applied different ground pressures and water pressures to rock samples at different burial depths to alter the rock's seepage characteristics. The permeability, pore distribution, and particle distribution characteristic parameters were determined, and the results showed that at the same burial depth, ground pressure had a greater effect on the reduction in permeability than water pressure. The patterns and mechanisms are as follows: under the influence of ground pressure, increasing the burial depth compresses the pores in the rock samples, decreases the proportion of effective permeable pores, and causes particle fragmentation, which blocks pore channels, resulting in a decrease in permeability. Under the influence of water pressure, increasing the burial depth expands the pores but also causes hard clay particles to decompose and block pore channels. As the burial depth increases, the particles eventually decompose completely, and the permeability initially decreases and then increases. In this experiment, the relationships between permeability and the proportion of pores larger than 0.15 ㎛ and the proportion of particles smaller than 59 ㎛ were found to be the most significant.

Experimental study of the influence of borehole parameters on prompt fission neutron uranium logging and its corrections

  • Pengfei Zhou;Bin Tang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3090-3096
    • /
    • 2024
  • In prompt fission neutron uranium logging, borehole environmental parameters affect the measured results and must be corrected. In order to explore the influence of borehole parameters on the interpretation of logging results, this paper builds a sandstone type uranium ore block model to simulate the field production drilling device based on the "Epithermal/Thermal neutron counting rate ratio" (E/T) theory. The effects of borehole diameter, thickness of iron tube and well fluid on the decay rate of epithermal and thermal neutrons and their uncertainty correction methods were investigated. The results show that the effect of borehole diameter on E/T is negligible. The iron tube thickness has a certain effect on the moderation and absorption of epithermal and thermal neutrons, and its E/T increases slightly with increasing thickness. The influence of iron tube thickness on E/T is corrected and the relative uncertainty is less than 5%. The well fluid thickness also affects the decay rate of epithermal and thermal neutrons, and its E/T follows the law of negative exponential attenuation. The influence of well fluid thickness on E/T is corrected and the relative uncertainty is less than 5%. This study provides technical guidance for field well survey of uranium deposit.

The Role of Organic Matter in Gold Occurrence: Insights from Western Mecsek Uranium Ore Deposit

  • Medet Junussov;Ferenc Madai;Janos Foldessy;Maria Hamor-Vido
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.371-386
    • /
    • 2024
  • This paper presents analytical insights regarding into the occurrence of gold within organic matter, which is hosted by solid bitumen and closely associated with uranium ores in the Late Permian Kővágószőllős Sandstone Formation in Western Mecsek, South-West Hungary. The study utilizes a range of analytical techniques, including X-ray powder diffraction (XRPD) and wavelength dispersive X-ray fluorescence (WD-XRF) for comprehensive mineralogical and elemental analysis; organic petrography and electron microprobe analysis for characterizing organic matter; and an organic elemental analyzer for identifying organic compounds. A three-step sequential extraction method was used to liberate gold from organic matter and sulfide minerals, employing KOH, HCl, and aqua regia, followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) to quantify gold contents. The organic matter is identified as comprising two vitrinite types (telinite V1 and reworked V2) and three solid bitumen forms: nonfluorescing (B1) and fluorescing (B2) fillings within the V1, as well as homogenous pyrobitumen (PB) occupying narrow cracks and voids within globular quartz. Despite the samples exhibiting low total organic carbon content (<1 wt%), they display high sulfur content (up to 6 wt%) and the sequentially extracted noble metal content from the organic matter is found to total 7.45 ppm gold. The research findings suggest that organic matter plays crucial roles in ore mineralization processes. Organic matter acts as an active component in the migration of gold, uranium, and hydrocarbons within sulfur-rich hydrothermal fluids. Additionally, organic matter contributes to the entrapment and enrichment of gold in hetero-atomic organic fractions, forming metal-organic compounds. Moreover, uranium inclusions are observed as oxide/phosphate minerals within solid bitumen and associated vitrinite particles. These insights into the occurrence and distribution of gold within organic matter highlight substantial exploration potential, guiding additional research activities focused on organic matter within the Kővágószőllős Sandstone Formation at the Western Mecsek deposit.

Seepage characteristics of the leaching solution during in situ leaching of uranium

  • Sheng Zeng ;Jiayin Song ;Bing Sun;Fulin Wang ;Wenhao Ye;Yuan Shen;Hao Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.566-574
    • /
    • 2023
  • Investigating the seepage characteristics of the leaching solution in the ore-bearing layer during the in situ leaching process can be useful for designing the process parameters for the uranium mining well. We prepared leaching solutions of four different viscosities and conducted experiments using a self-developed multifunctional uranium ore seepage test device. The effects of different viscosities of leaching solutions on the seepage characteristics of uranium-bearing sandstones were examined using seepage mechanics, physicochemical seepage theory, and dissolution erosion mechanism. Results indicated that while the seepage characteristics of various viscosities of leaching solutions were the same in rock samples with similar internal pore architectures, there were regular differences between the saturated and the unsaturated stages. In addition, the time required for the specimen to reach saturation varied with the viscosity of the leaching solution. The higher the viscosity of the solution, the slower the seepage flow from the unsaturated stage to the saturated stage. Furthermore, during the saturation stage, the seepage pressure of a leaching solution with a high viscosity was greater than that of a leaching solution with a low viscosity. However, the permeability coefficient of the high viscosity leaching solution was less than that of a low viscosity leaching solution.