• Title/Summary/Keyword: Uranium in soil

Search Result 85, Processing Time 0.019 seconds

Measurement and Spatial Analysis of Uranium-238 and Radon-222 of Soil in Seoul

  • Oh, Dal-Young;Shin, Kyu-Jin;Jeon, Jae-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • Identification of radon in soil provides information on the areas at risk for high radon exposure. In this study, we measured uranium-238 and radon-222 concentrations in soil to assess their approximate levels in Seoul. A total of 246 soil samples were taken to analyze uranium with ICP-MS, and 120 measurements of radon in soil were conducted with an in-situ radon detector, Rad7 at a depth of 1-1.5 m. The data were statistically analyzed and mapped, layered with geological classification. The range of uranium in soil was from 0.0 to 8.5 mg/kg with a mean value of 2.2 mg/kg, and the range of radon in soil was from 1,887 to $87,320Bq/m^3$ with a mean value of $18,271Bq/m^3$. The geology had a distinctive relationship to the uranium and radon levels in soil, with the uranium and radon concentrations in soils overlying granite more than double those of soils overlying metamorphic rocks.

Modeling the sensitivity of hydrogeological parameters associated with leaching of uranium transport in an unsaturated porous medium

  • Mohanadhas, Berlin;Govindarajan, Suresh Kumar
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.462-473
    • /
    • 2018
  • The uranium ore residues from the legacies of past uranium mining and milling activities that resulted from the less stringent environmental standards along with the uranium residues from the existing nuclear power plants continue to be a cause of concern as the final uranium residues are not made safe from radiological and general safety point of view. The deposition of uranium in ponds increases the risk of groundwater getting contaminated as these residues essentially leach through the upper unsaturated geological formation. In this context, a numerical model has been developed in order to forecast the $^{238}U$ and its progenies concentration in an unsaturated soil. The developed numerical model is implemented in a hypothetical uranium tailing pond consisting of sandy soil and silty soil types. The numerical results show that the $^{238}U$ and its progenies are migrating up to the depth of 90 m and 800 m after 10 y in silty and sandy soil, respectively. Essentially, silt may reduce the risk of contamination in the groundwater for longer time span and at the deeper depths. In general, a coupled effect of sorption and hydro-geological parameters (soil type, moisture context and hydraulic conductivity) decides the resultant uranium transport in subsurface environment.

Determination of the Concentration and Isotope Ratio of Uranium in Soil and Water by Thermal Ionization Mass Spectrometry

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.12-15
    • /
    • 2014
  • Thermal ionization mass spectrometry (TIMS) was used to determine the concentration and isotope ratio of uranium contained in samples of soil and groundwater collected from Korea. Quantification of uranium in ground water samples was performed by isotope dilution mass spectrometry. A series of chemical treatment processes, including chemical separation using extraction chromatography, was applied to the soil samples to extract the uranium. No treatments other than filtration were applied to the groundwater samples. Isotopic analyses by TIMS showed that the isotope ratios of uranium in both the soil and water samples were indistinguishable from those of naturally abundant uranium. The concentration of uranium in the groundwater samples was within the U.S. acceptable standards for drinking water. These results demonstrate the utility of TIMS for monitoring uranium in environmental samples with high analytical reliability.

Efficient Sample Digestion Method for Uranium Determination in Soil using Microwave Digestion for Alpha Spectrometry (마이크로파 용해장치를 활용한 토양 중 우라늄의 알파분광분석법)

  • Kim, Chang Jong;Cho, Yoon Hae;Kim, Dae Ji;Chae, Jung Seok;Yun, Ju Yong
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.213-218
    • /
    • 2012
  • Alpha spectrometry has been typically used for determination of the uranium isotopes in soil. For a number of uranium analysis in soil samples, rapid sample digestion with limited quantities of mixed acid containing HF will give a contribution for effective management of uranium analysis. Microwave digestion system is evaluated for rapid sample digestion using reference uranium soil (IAEA-375 soil). For completion of 0.5 g of soil digestion by microwave, 3 ml of HF in a 10 ml of mixed acid is minimum requirement volume for completed soil digestion for 80 minutes. Microwave digestion is timely effective techniques for uranium measurement using alpha spectrometry compared to the other methods (open vessel digestion, closed vessel digestion) due to rapid sample digestion. In addition, it can be reduced the occurrence of hazardous substances by minimizing the amount of HF.

Environmental Characteristics of Naturally Occurring Radioactive Materials (238U, 222Rn) Concentration in Drinking Groundwaters of Metamorphic Rock Areas: Korea (국내 변성암 지역 음용지하수 중 자연방사성물질(238U, 222Rn)의 환경 특성 연구)

  • Ju, Byoung Kyu;Kim, Moon Su;Jeong, Do Hwan;Hong, Jung Ki;Kim, Dong Su;Noh, Hoe Jung;Yoon, Jeong Ki;Kim, Tae Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.82-92
    • /
    • 2013
  • This study has investigated naturally occurring radioactive materials (N.O.R.M; $^{238}U$, $^{222}Rn$) for 353 drinking groundwater wells in metamorphic rock areas in Korea. Uranium concentrations ranged from N.D (not detected) to 563.56 ${\mu}g/L$ (median value, 0.68 ${\mu}g/L$) and radon concentrations ranged from 108 to 11,612 pCi/L (median value, 1,400 pCi/L). Uranium and radon concentrations in the groundwater generally are similar to USA with similar geological setting. Uranium concentrations in 9 wells (2.6%) exceeded 30 ${\mu}g/L$, which is the maximum contaminant level (MCL) by the US environmental protection agency (EPA), radon concentrations in 46 wells (13%) exceeded 4,000 pCi/L, which is the Alternative MCL (AMCL) by the US.EPA. The log-log correlation coefficient between uranium and radon was 0.32. The correlation coefficient between uranium and pH was 0.12 and the correlation coefficient between radon and temperature was -0.01. The correlation coefficient between uranium and $HCO_3$ was 0.09 and the correlation coefficient between uranium and Ca was 0.11. The median value of uranium was high Chung-Buk (1.78 ${\mu}g/L$), Gyeong-Buk (1.37 ${\mu}g/L$), In-Cheon (1.06 ${\mu}g/L$) for each province. On the other hand, the median value of radon was high In-Cheon (2,962 pCi/L), Chung-Buk (2,339 pCi/L), Jeon-Buk (2,165 pCi/L) for each province. Jeon-Buk for log-log correlation coefficient is the highest (0.63) among provinces.

Reduction of Radioactive Waste from Remediation of Uranium-Contaminated Soil

  • Kim, Il-Gook;Kim, Seung-Soo;Kim, Gye-Nam;Han, Gyu-Seong;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.840-846
    • /
    • 2016
  • Great amounts of solid radioactive waste (second waste) and waste solution are generated from the remediation of uranium-contaminated soil. To reduce these, we investigated washing with a less acidic solution and recycling the waste solution after removal of the dominant elements and uranium. Increasing the pH of the washing solution from 0.5 to 1.5 would be beneficial in terms of economics. A high content of calcium in the waste solution was precipitated by adding sulfuric acid. The second waste can be significantly reduced by using sorption and desorption techniques on ampholyte resin S-950 prior to the precipitation of uranium at pH 3.0.

Improvement of Pilot-scale Electrokinetic Remediation Technology for Uranium Removal (우라늄 제거를 위한 실험실 규모 동전기 장치의 개선 방안)

  • Park, Hye-Min;Kim, Gye-Nam;Kim, Seung-Soo;Kim, Wan-Suk;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • The original pilot-scale electrokinetic equipment suitable to soil contamination characteristics of Korean nuclear facility sites was manufactured for the remediation of soil contaminated with uranium. During the experiment with the original electrokinetic equipment, many metal oxides were generated and were stuck on the cathode plate. The uranium removal capability of the original electrokinrtic equipment was almost exhausted because the cathode plate covered with metal oxides did not conduct electricity in the original electrokinetic equipment. Therefore, the original electrokinetic equipment was improved. After the remediation experience for 25 days using the improved electrokinetic remediation equipment, the removal efficiency of uranium from the soil was 96.8% and its residual uranium concentration was 0.81 Bq/g. When the initial uranium concentration of soil was about 50 Bq/g, the electrokinetic remediation time required to remediate the uranium concentration below clearance concentration of 1.0 Bq/g was about 34 days. When the initial uranium concentration of soil was about 75 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 42 days. When the initial uranium concentration of soil was about 100 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 49 days.

Uranium Activity Analysis of Soil Sample Using HPGe Gamma Spectrometer (고순도 반도체(HPGe) 감마분광시스템을 이용한 토양 중 우라늄 방사능 분석)

  • Lee, Wan-No;Kim, Hee-Reyoung;Chung, Kun-Ho;Cho, Young-Hyun;Kang, Mun-Ja;Lee, Chang-Woo;Choi, Geun-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.3
    • /
    • pp.105-110
    • /
    • 2010
  • Using N-type HPGe gamma spectrometer, uranium analysis technique of soil sample is developed where the chemical preprocessing is not a necessity. The results of uranium activities using the method presented in this paper were compared with those results with conventional alpha spectrometer and two results were similar from within uncertainty range. Therefore, this new method will be applied in uranium activity analysis of soil sample.

Characterization and Feasibility Study of the Soil Washing Process Applying to the Soil Having High Uranium Concentration in Korea (우라늄 함량이 높은 국내 토양에 대한 토양학적 특성 규명 및 토양세척법의 적용성 평가)

  • Chang, See-Un;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.8-19
    • /
    • 2008
  • The physicochemical properties of soils having high uranium content, located around Duckpyungri in Korea, were investigated and the lab scale soil washing experiments to remove uranium from the soil were preformed with several washing solutions and on various washing conditions. SPLP (Synthetic Precipitation Leaching Procedure), TCLP (Toxicity Characteristic Leaching Procedure), and SEP (Sequential Extraction Procedure) for the soil were conducted and the uranium concentration of the extracted solution in SPLP was higher than Drinking Water Limit of USEPA (30 ${\mu}g$/L), suggesting that the continuous dissolution of uranium from soil by the weak acid rain may generate the environmental pollution around the research area. For the soil washing experiments, the uranium removal efficiency of pH 1 solution for S2 soil was about 80 %, but dramatically decreased as pH of solution was > 2, suggesting that strong acidic solutions are available to remove uranium from the soil. For solutions with 0.1M of HCl and 0.05 M of ${H_2}{SO_4}$, their removal efficiencies at 1 : 1 of soil vs. washing solution ratio were higher than 70%, but the removal efficiencies of acetic acid, and EDTA were below 30%. At 1 : 3 of soil vs. solution, the uranium removal efficiencies of 0.1M HCl, 0.05 M ${H_2}{SO_4}$, and 0.5M citric acid solution increased to 88%, 100%, and 61% respectively. On appropriate washing conditions for S2 soil such as 1 : 3 ratio for the soil vs. solution ratio, 30 minute for washing time, and 2 times continuous washing, TOC (Total Organic Contents) and CEC (Cation Exchange Capacity) for S2 soil were measured before/after soil washing and their XRD (X-Ray Diffraction) and XRF (X-Ray Fluorescence) results were also compared to investigate the change of soil properties after soil washing. TOC and CEC decreased by 55% and 66%, compared to those initial values of S2 soil, suggesting that the soil reclaimant may need to improve the washed soils for the cultivated plants. Results of XRF and XRD showed that the structural change of soil after soil washing was insignificant and the washed soil will be partially used for the further purpose.

Distribution Characteristics of Uranium and Radon Concentration in Groundwaters of Provinces in Korea (지역별 지하수중 우라늄과 라돈의 함량 분포 특성)

  • Jeong, Do-Hwan;Kim, Moon-Su;Ju, Byoung-Kyu;Kim, Tae-Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.143-149
    • /
    • 2011
  • In order to figure out the characteristics of radionuclides concentrations of nine provinces, we analyzed uranium and radon in 681 samples of groundwater. Most of uranium concentrations in each province were less than $10{\mu}g/L$, and Gyeongnam, Jeonnam, Jeju provinces did not have groundwaters exceeding the US EPA drinking water MCL ($30{\mu}g/L$) of uranium. The ratio of radon values exceeding US EPA drinking water AMCL (4,000 pCi/L) was 22.6% (154/681) and Gyeongnam and Jeju provinces had no groundwaters exceeding the AMCL (alternative maximum contaminant level). Uranium and radon concentrations in groundwaters of Gyeonggi, Chungbuk, Jeonbuk, Chungnam mainly composed of the Mesozoic granite and the Precambrian gneiss were relatively high, but the concentrations of Gyeongnam and Jeju widely comprised of the sedimentary rock and the volcanic rock were relatively low. A week correlation between uranium and radon values showed in Gangwon, Chungbuk, Gyeonggi provinces.