• Title/Summary/Keyword: Uranium Metal

Search Result 130, Processing Time 0.03 seconds

Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • Luzzi, L.;Barani, T.;Boer, B.;Cognini, L.;Nevo, A. Del;Lainet, M.;Lemehov, S.;Magni, A.;Marelle, V.;Michel, B.;Pizzocri, D.;Schubert, A.;Uffelen, P. Van;Bertolus, M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3367-3378
    • /
    • 2021
  • The design phase and safety assessment of Generation IV liquid metal-cooled fast reactors calls for the improvement of fuel pin performance codes, in particular the enhancement of their predictive capabilities towards uranium-plutonium mixed oxide fuels and stainless-steel cladding under irradiation in fast reactor environments. To this end, the current capabilities of fuel performance codes must be critically assessed against experimental data from available irradiation experiments. This work is devoted to the assessment of three European fuel performance codes, namely GERMINAL, MACROS and TRANSURANUS, against the irradiation of two fuel pins selected from the SUPERFACT-1 experimental campaign. The pins are characterized by a low enrichment (~ 2 wt.%) of minor actinides (neptunium and americium) in the fuel, and by plutonium content and cladding material in line with design choices envisaged for liquid metal-cooled Generation IV reactor fuels. The predictions of the codes are compared to several experimental measurements, allowing the identification of the current code capabilities in predicting fuel restructuring, cladding deformation, redistribution of actinides and volatile fission products. The integral assessment against experimental data is complemented by a code-to-code benchmark focused on the evolution of quantities of engineering interest over time. The benchmark analysis points out the differences in the code predictions of fuel central temperature, fuel-cladding gap width, cladding outer radius, pin internal pressure and fission gas release and suggests potential modelling development paths towards an improved description of the fuel pin behaviour in fast reactor irradiation conditions.

Source Term Characterization for Structural Components in $17{\times}17$ KOFA Spent Fuel Assembly ($17{\times}17$ KOFA 사용후핵연료집합체내 구조재의 방사선원항 특성 분석)

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Heui-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 2010
  • Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core with different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be $1.40{\times}10^{15}$ Bequerels, 236 Watts, $4.34{\times}10^9m^3$-water, respectively, at 10 years after discharge. Those values correspond to 0.7 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 20~45 % and 30~45 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important.

Electrolytic Reduction of 1 kg-UO2 in Li2O-LiCl Molten Salt using Porous Anode Shroud (Li2O-LiCl 용융염에서의 다공성 양극 슈라우드를 이용한1kg 우라늄산화물의 전해환원)

  • Choi, Eun-Young;Lee, Jeong;Jeon, Min Ku;Lee, Sang-Kwon;Kim, Sung-Wook;Jeon, Sang-Chae;Lee, Ju Ho;Hur, Jin-Mok
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.121-129
    • /
    • 2015
  • The platinum anode for the electrolytic reduction process is generally surrounded by a nonporous ceramic shroud with an open bottom to offer a path for $O_2$ gas produced on the anode surface and prevent the corrosion of the electrolytic reducer. However, the $O^{2-}$ ions generated from the cathode are transported only in a limited fashion through the open bottom of the anode shroud because the nonporous shroud hinders the transport of the $O^{2-}$ ions to the anode surface, which leads to a decrease in the current density and an increase in the operation time of the process. In the present study, we demonstrate the electrolytic reduction of 1 kg-uranium oxide ($UO_2$) using the porous shroud to investigate its long-term stability. The $UO_2$ with the size of 1~4mm and the density of $10.30{\sim}10.41g/cm^3$ was used for the cathode. The platinum and 5-layer STS mesh were used for the anode and its shroud, respectively. After the termination of the electrolytic reduction run in 1.5 wt.% $Li_2O-LiCl$ molten salt, it was revealed that the U metal was successfully converted from the $UO_2$ and the anode and its shroud were used without any significant damage.

Revaluation of Strategic Metallic Commodities in the Metallic Mines within Taebaeksan-Hwanggangri Metallogenic Belt (태백산-황강리 광화대 금속광산의 전략금속광종 재평가)

  • Lee, Jae-Ho;Heo, Chul-Ho;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.287-297
    • /
    • 2008
  • In order to estimate the preliminary development feasibility according to the commodity, the content of 8 strategic metallic commoditites(Pb, Zn, Cu, Fe, Mo, W, Au, U) in 68 ore specimens obtained from 34 metallic mines within the Taebaegsan-Hwanggangri mineralized zone were analyzed. Analytical results are as follows. The ore specimen of Sangdong mine contained 23% copper(cut-off grade=0.7%) and those of Cheongil and Samhwanghak mines contained average 5% zinc(cut-off grade=2.0%). Especially, the detailed investigation on the above-mentioned mines is required. And, in case of molybdenum(cut-off grade=0.02%) content in Yeonhwa No. 2(0.04%) and Hong-cheon mine(0.02%), and lead(cut-off grade=0.58%) content in Wongasa mine(0.70%), and gold(cut-off grade=10ppm) content in Dongmyoung(279ppm) and Samhwanghak mine(251ppm), it is required to elastically carry out the revaluation on reopening of mines in terms of the international metal price. On the other hand, in case of uranium, iron and tungsten, it is thought that there are no mines with the development potential value in this study.

Loss of Li2O Caused by ZrO2 During the Electrochemical Reduction of ZrO2 in Li2O-LiCl Molten Salt (Li2O-LiCl 용융염을 이용한 ZrO2의 전기화학적 환원과정에서 발생하는 Li2O의 손실)

  • Park, Wooshin;Hur, Jin-Mok;Choi, Eun-Young;Kim, Jong-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.229-236
    • /
    • 2012
  • A molten salt technology using $Li_2O$-LiCl has been extensively investigated to recover uranium metal from spent fuels in the field of nuclear energy. In the reduction process, it is an important point to maintain the concentration of $Li_2O$. $ZrO_2$ is inevitably contained in the spent fuels because Zr is one of the main components of fuel rod hulls. Therefore, the fate of $ZrO_2$ in $Li_2O$-LiCl molten salt has been investigated. It was found that $Li_2ZrO_3$ and $Li_4ZrO_4$ were formed chemically and electrochemically and they were not reduced to Zr. The recycling of $Li_2O$ is the key mechanism ruling the total reaction in the electrolytic reduction process. However, $ZrO_2$ will have a role as a $Li_2O$ sink.

Performance Evaluation of Stirrers for Preventing Dendrite Growth on Liquid Cathode (액체음극에서의 금속 수지상 성장 억제를 위한 교반기 성능평가)

  • Kim, Si-Hyung;Yoon, Dal-Seong;You, Young-Jae;Paek, Seung-Woo;Shim, Joon-Bo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.125-131
    • /
    • 2009
  • An electrolytic system (zinc anode-gallium cathode) was setup to evaluate the performance of several stirrers prepared for this study, where stirrers have been used to prevent uranium from forming dendrite on the cathode in pyrochemical process. In the case of no-stirring condition, zinc dendrites began to grow on the gallium surface in 1 hour and some dendrite grew out of the cathode crucible around 6 hours. When a rectangular stirrer or a tilt stirrer was rotated, at 40${\sim}$150 rpm, to mix the liquid gallium cathode, dendritic growth of zinc metal was prevented irrespective of revolution speed, but some of the deposits overflowed out of the cathode crucible owing to the large centrifugal forces at 150 rpm. The harrow stirrer did not nearly retard the dendrite growth at 40 rpm, but the dendrite growth was retarded at higher than 100 rpm and the zinc deposits also did not overflow at 150 rpm. Pounder could also prevent the dendrite growth to some extent but it had some difficulties in operation compared with other types of stirrers.

  • PDF

Dechlorination/Solidification of LiCl Waste by Using a Synthetic Inorganic Composite with Different Compositions (합성무기복합체 조성변화에 따른 모의 LiCl 염폐기물의 탈염소화/고형화)

  • Kim, Na-Young;Cho, In Hak;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.211-221
    • /
    • 2016
  • Waste salt generated from a pyro-processing for the recovery of uranium and transuranic elements has high volatility at vitrification temperature and low compatibility in conventional waste glasses. For this reason, KAERI (Korea Atomic Energy Research Institute) suggested a new method to de-chlorinate waste salt by using an inorganic composite named SAP ($SiO_2-Al_2O_3-P_2O_5$). In this study, the de-chlorination behavior of waste salt and the microstructure of consolidated form were examined by adding $B_2O_3$ and $Fe_2O_3$ to the original SAP composition. De-chlorination behavior of metal chloride waste was slightly changed with given compositions, compared with that of original SAP. In the consolidated forms, the phase separation between Si-rich phase and P-rich phase decreases with the amount of $Al_2O_3$ or $B_2O_3$ as a connecting agent between Si and P-rich phase. The results of PCT (Product Consistency Test) indicated that the leach-resistance of consolidated forms out of reference composition was lowered, even though the leach-resistance was higher than that of EA (Environmental Assessment) glass. From these results, it could be inferred that the change in the content of Al or B in U-SAP affected the microstructure and leach-resistance of consolidated form. Further studies related with correlation between composition and characteristics of wasteform are required for a better understanding.

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) inorganic composite: Part 1. Dechlorination Behavior of LiCl-KCl and Characteristics of Consolidation (SiO2-Al2O3-P2O5 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 1. LiCl-KCl의 탈염화 반응거동 및 고형화특성)

  • Cho, In-Hak;Park, Hwan-Seo;Ahn, Soo-Na;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • The metal chloride wastes from a pyrochemical process to recover uranium and transuranic elements has been considered as a problematic waste difficult to apply to a conventional solidification method due to the high volatility and low compatibility with silicate glass. In this study, a dechlorination approach to treat LiCl-KCl waste for final disposal was adapted. In this study, a $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic composite as a dechlorination agent was prepared by a conventional sol-gel process. By using a series of SAPs, the dechlorination behavior and consolidation of reaction products were investigated. Different from LiCl waste, the dechlorination reaction occurred mainly at two temperature ranges. The thermogravimetric test indicated that the first reaction range was about $400^{\circ}C$ for LiCl and the second was about $700^{\circ}C$ for KCl. The SAP 1071 (Si/Al/P=1/0.75/1 in molar) was found to be the most favorable SAP as a dechlorination agent under given conditions. The consolidation test revealed that the bulk shape and the densification of consolidated forms depended on the SAP/Salt ratios. The leaching test by PCT-A method was performed to evaluate the durability of consolidated forms. This study provided the basic information on the dechlorination approach. Based on the experimental results, the dechlorination method using a $SiO_2-Al_2O_3-P_2O_5$ (SAP) could be considered as one of alternatives for the immobilization of waste salt.

Revaluation of Ore Deposits within the Yeongam District, Cheollanamdo-Province: The Eunjeok and Sangeun Mines (전남 영암지역 광상 재평가: 은적.상은 광산를 중심으로)

  • Heo, Chul-Ho;Park, Sung-Won;Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.73-84
    • /
    • 2010
  • Gold and silver deposits within the Eunjeok and Sangeun mines are located in Yeongam district, Cheollanamdo-province. They are composed of vein ore bodies infilling the fractures of Cretaceous rhyolitic tuff. The Eunjeok mine have three gold and silver bearing hydrothermal veins which is infilling the fracture of rhyolitic tuff. Major ore minerals within the Eunjeok and Sangeun mines are arsenopyrite, pyrite, chalcopyrite, sphalerite and galena and minor ores are electrum, native silver and argentite. Sericitization is dominant in alteration zone and chloritization and dickitization is minor. Quartz veins in the Eunjeok and Sangeun mine have the similar paragenesis and vein textures such like breccia, crustiform, comb and vuggy morphology indicating the formation of typical epithermal environment. In order to carry out the preliminary feasibility study of mine according to the commodity and elucidate the occurrence features of mineral resources from Eunjeok and Sangeun mine, common commodity (Pb, Zn, Cu, Fe, Mo, W, Au and U), and industrial commodity (In, Re, Ga, Ge, Se, Te, Y, Eu and Sm) for 17 ore specimen were analyzed. It is tentatively thought that there is no exploitable mine for iron, lead, zinc, copper, tungsten and uranium based on the preliminary result. If the reserves are secured through the detailed prospecting in case of molybdenum and silver, it is tentatively thought that there will be exploitable deposits depending on international metal price. If we assume the vein width from 0.25 m to 2 m including alteration zone with the gold grade of 80g/t, it is inferred that the resources amount of the Eunjeok-Sangeun mines range from 6.5 to 65ton. However, as the vein structure of the Eunjeok and Sangeun mines is developed together with alteration zone, it should be estimated to include potential alteration zone in order to yield the average grade. It is needed to carry out more exploration in the near future because the reserves can be flexibly estimated according to the change of average grade considering the alteration zone.

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.