• Title/Summary/Keyword: Uranium Ion(VI)

Search Result 36, Processing Time 0.017 seconds

Electrosorption of U(VI) by Surface-Modified Activated Carbon Fiber (표면처리 활성탄소섬유에 의한 U(VI)의 전기흡착)

  • Lee, Yu Ri;Jung, Chong Hun;Ryu, Seung Kon;Oh, Won Zin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.60-65
    • /
    • 2005
  • The electrosorption of U(VI) from waste water was carried out by using activated carbon fiber(ACF) felt electrode in a continuous electrosorption cell. In order to enhance the electrosorption capacity at lower potential, ACF felt was chemically modified in acidic, basic and neutral solution. Pore structure and functional groups of chemically modified ACF were examined, and the effect of treatment conditions was studied for the adsorption of U(VI). Specific surface area of all ACFs decreases by this treatment. The amount of acidic functional groups decreases with basic and neutral salt treatment, while the amount increases a lot with acidic treatment. The electrosorption capacity of U(VI) decreases on using the acid treated electrode due to the shielding effect of acidic functional groups. Base treated electrode enhances the capacity due to the reduction of acidic functional groups. The electrosorption amount of U(VI) on the base treated electrode at -0.3 V corresponds to that of ACF electrode at -0.9 V. Such a good adsorption capacity was not only due to the reduction of shielding effect but also the increase of $OH^-$ in the electric double layer on ACF surface by the application of negative potential.

A Study on the Adsorption of Metal Ions Utilizing OenNtn Synthetic Resin (OenNtn 합성수지를 이용한 금속이온들의 흡착에 관한 연구)

  • 김준태;노기환
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.80-89
    • /
    • 1999
  • The ion exchange resins have been synthesized from chlormethyl styrene-1,4-divinyl benzene(DVB) with 1%, 5%, and 10%-crosslinking and macrocyclic ligand of cryptand type by copolymerization method and the adsorption characteristics of uranium(VI), lead(II) and holmium(III) ions have been investigated in various experimental conditions. The correlation between the adsorption characteristics of rare earths and transition metal on the resins and stability constants of complexes with macrocyclic ligand have been examined. The $UO_2^{2+}$ aqueous solutions are not adsorbed on the resins below pH 3.0, but the power of adsorption of $UO_2^{2+}$ increased rapidly above pH 4.0. The adsorption power was in the order of 1%, 10%, and 5%-crosslinked resin, but adsorptive characteristics of resins decreased in proportion to the order of dielectric constants of solvents.

  • PDF

Studies on the New Analytical Methods for Separation and Recovery of Rare Earth Metals (I) : Adsorption Characteristics of U(VI) Ion by New Synthetic Resins with Macrocyclic Compounds (희토류금속 분리 및 회수를 위한 분석화학적 연구 (제1보) : 우라늄(VI)의 분리회수를 위한 선택이온교환수지 합성과 우라늄(VI) 금속이온의 흡착특성)

  • Jung Oh Jin;Hak Jin Jung;Joon Tea Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.358-370
    • /
    • 1988
  • Several new ion exchange resins have been synthesized from chloromethyl styrene-1,4-divinylbenzene(DVB) with 1%, 2%, 4%, and 10%-crosslinking and macrocyclic ligands of cryptand type by interpolymerization method. The adsorption characteristics and the pH, time, solvents and concentration dependence of the adsorption of metal ions by this resin were studied. The correlation between the separation characteristics of uranium, rare earths and transition metal on the resins and the stability constants of complexes with macrocyclic ligands have been examined. The resins were very stable in both acidic and basic media and have good resistance to heat at $280^{\circ}C$. The $UO_2^{+2}$ aqueous solution are not adsorbed on the resins below pH 3.0, but the power of adsorption of $UO_2^{2+}$ increased rapidly above pH 4.0. The optimum equilibrium time for adsorption of metallic ions was twenty minutes and adsorptive power decreased in proportion to crosslinking size of the resins and order of dielectric constants of solvents used and the selective sequence for metal cations is in the order of $UO_2^{2+},\;Cu^{2+}\;and\;Nd^{3+}$.

  • PDF

A Study on Resin Synthesis and Adsorption Characteristics for Separation and Recovery of U(VI) (우라늄(VI)의 분리회수를 위한 수지합성과 흡착특성에 관한 연구)

  • 강영식;노기환
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.31-41
    • /
    • 1999
  • Several new ion exchange resins have been synthesized from chloromethyl styrene-1, 4-di-vinylbenzene with 1%, 2%, 5% and 10%-crosslinking and macrocyclic ligands of cryptand type by interpolymerization method. The adsorption characteristics and the pH, time, solvents and concentration dependence of the adsorption of metal ions by this resin were studied. The correlation between the separation characteristics of uranium and transition metal on the resins and the stability constants of complexes with macrocyclic ligands have been examined. The resins were very stable in both acidic and basic media and had good resistance to heat at $280^{\circ}C$. The $UO_2^{2+}$ aqueous solution was not adsorbed on the resins below pH 3.0, but the power of adsorption of $UO_2^{2+}$ increased rapidly above pH 4.0. The optimum equilibrium time for adsorption of metallic ions was twenty minutes and adsorptive power decreased in proportion to crosslinking size of the resins and order of dielectric constants of solvents used and the selective sequence for metal cations is in the order of $UO_2^{2+}$, $Cu^{2+}$ and $Ce^{3+}$ .

  • PDF

A Study on the Adsorption of U(VI), NiI(II), Nd(III) Metal Ions Using Synthetic Resin (합성수지를 이용한 U(VI), NiI(II), Nd(III) 금속이온들의 흡착에 관한 연구)

  • 박성규;김준태;노기환
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.1
    • /
    • pp.77-87
    • /
    • 2000
  • Several new ion exchange resins have been synthesized from chloromethyl styrene-l,4-divinylbenzine with 1%, 2%, 10% and 20%-crosslink and macrocyclic ligands of cryptand type by interpolymerization method. The adsorption characteristics and the pH, time, solvents and concentration dependence of the adsorption of metal ions by this resin were studied. The correlation between the separation characteristics of uranium and transition metal on the resins and the stability constants of complexes with macrocyclic ligands have been examined. The resins were very stable in both acidic and basic media and have good resistance to heat. The $UO_2^{2+}$ was not adsorbed on the resins below pH 3.0, but the power of adsorption of $UO_2^{2+}$ increased rapidly above pH 4.0. The optimum equilibrium time for adsorption of metallic ions was two hours and adsorptive power decreased in proportion to crosslink size of the resins and order of dielectric constants of solvents used and the selective sequence for metal cations was in the order of $UO_2^{2+}$, $Ni{2+}$ and $Nd{3+}$.

  • PDF

Sorption of $UO^{2+}_2$ onto Goethite and Kaolinite: Mechanistic Modeling Approach

  • Jinho Jung;Lee, Jae-Kwang;Cho, Young-Hwan;Keum, Dong-Kwon;Hahn, Pil-Soo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.182-191
    • /
    • 1999
  • The sorption of UO$_{2}$$^{2+}$ onto goethite and kaolinite under various experimental conditions was successfully interpreted using surface complexation modeling (SCM). The SCM approach used in this work is the triple-layer model (TLM) in which weakly bonded ions are modeled as outer-sphere (ion-pair) complexes and strongly bonded ions as inner-sphere (surface coordination) complexes. The change of ionic strength did not affect the U(VI) sorption onto goethite, thus the formation of inner-sphere surface complexes, (FeO)$_2$UO$_2$ and (FeO)$_2$(UO$_2$)$_3$OH$_{5}$ was assumed to simulate the effects of ionic strength and goethite concentration. On the other hand, the U(VI) sorption onto kaolinite showed ionic strength dependence, thus the formation of AlO-UO$_{2}$$^{2+}$(outer-sphere complex) and SiO(UO$_2$)$_3$OH$_{5}$ (inner-sphere complex) was assumed to simulate the experimental data. In the presence of carbonates, the sorption of U(VI) onto kaolinite decreased in the weakly alkaline pH range. This was well simulated assuming the formation of a outer-sphere surface complex, A1OH$^{2+}$- (UO$_2$)$_2$CO$_3$OH$_3$. Since SCM approach uses thermodynamic data such as surface complexation constants, it is more predictive than empirical modeling approach in which conditional values such as partition coefficient are used. used.

  • PDF