• Title/Summary/Keyword: Upstream sites

Search Result 226, Processing Time 0.025 seconds

The Influence of Gunwi Dam Construction on Community Fluctuations of Benthic Macroinvertebrates (군위댐 건설 공사가 저서성대형무척추동물 군집 변동에 미치는 영향)

  • Kwon, Hyeok-Yeong;Lee, Mi-Jin;Park, Jinyoung;Lee, Jong-Eun
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.807-817
    • /
    • 2014
  • Benthic macroinvertebrates were seasonally sampled from upstream and downstream of the Gunwi Dam construction site from 2006 to 2012. Totally 148 and 165 species were collected at the upstream and downstream sampling sites, respectively. At the upstream area after dam construction, there was no significant change of the numbers of non-insect taxa, but at the downstream area, the non-insect taxon numbers were increased gradually. The individual ratio of Ephemeroptera and Diptera had higher value than the other taxa in both of up and downstream. The trichopteran individual ratios were increased in upstream sites, but decreased in downstream sites from 2010. Also, non-insects and coleopteran individual ratios were decreased in upstream, but increased in downstream after completion of dam construction. The annual range of fluctuation in community indices narrowed after construction. According to a functional feeding group analysis, the individual ratios of FC (Filtering Collector) were increased, and GC (Gathering Collector) and SC (Scraper) were decreased in upstream sites annually. In contrast, the annual individual ratios of FC were decreased, and GC and SC were increased in the downstream sites.

A Study on Water Environment and Benthic Macroinvertebrate Community in Reclaimed Wastewater Effluent Dominated Stream (하수처리수 방류 하천의 물환경과 저서성 대형무척추동물 군집 생태 연구)

  • Son, Jung-Won;Kwag, Jin-Suk;Cho, Gab-Je;Ryou, Dong-Choon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.190-203
    • /
    • 2021
  • Water quality, benthic macroinvertebrate communities, and other factors were investigated to explore the effects of the effluent discharge from a sewage treatment plant into Jwagwang stream in Busan in 2019. During the study period, the flow rate of this stream was in the range of 10,400 m3/day to 52,200 m3/day except for the discharge of about 24,000 m3/day of the effluent. After discharge, the flow velocity increased by about 65% and the water depth increased by about 40%. At sites downstream of the discharge point, BOD, COD, TOC, T-N, T-P, and other water quality values were worse than those of the upstream sites. The periphytic algal chlorophyll-a concentrations in the natural substrata were higher than those of the upstream sites, especially in May and August. However, at sites downstream of the discharge point, the individual numbers of Annelida were decreased and individual numbers of the insecta of arthropoda were increased. Also, species numbers and the diversity and dominance indexes were improved in the sites downstream of the discharge point. The functional feeding groups (FFGs) of collector-filterers were increased and the habitat orientation groups (HOGs) of sprawlers, burrowers, and clingers were especially increased at the sites with additional reclaimed wastewater effluent flow. Regardless of the effluent discharge, BMI, an indicator of ecological stream health using benthic macroinvertebrate species, did not show large gaps between the study points. Although the water quality of the sites downstream of the discharge point was much worse than those upstream, their ecosystem soundness was better than those of the upstream sites from an ecological perspective.

Assessment of Heavy Metal Pollution in Surface Sediments of the Yeongsan River (영산강 수계 표층 퇴적물의 금속류 분포 및 오염도 평가)

  • Yang, Hae Jong;Kang, Tae-Woo;Bong, Ki Moon;Jeong, Hyo Jin;Yang, Won Jun;Han, Jong Hak;Jung, Heejung;Hwang, Soon Hong;Kim, Kyunghyun
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.292-303
    • /
    • 2018
  • The particle sizes and heavy metal concentrations (Pb, Zn, Cu, Cd, Hg, As, Cr, Ni, Li, Al) of surface sediments of the Yeongsan River were analyzed to assess the distribution and pollution level of heavy metals. The distribution of particle sizes was dominated by sand in the upstream sites (MS1-MS7) and by silt loam in the downstream sites (MS8-ML3), but MS3 and MS6, located slightly upstream of the two weirs, were found to be loamy sand and silt loam, respectively. The concentrations of Pb, Zn, Cu, Cd and Hg were higher at the upstream sites, while As, Cr, Ni and Li were higher at the downstream sites. The heavy metals of crustal origin (As, Cr, Ni and Li) were strongly correlated with particle size, while the other heavy metals (Pb, Zn, Cu, Cd and Hg) were weakly correlated with particle size. Considering their concentrations, most of heavy metals were evaluated as having almost no toxic effects on benthic organisms, at all sites. In addition, anthropogenic contamination by the $I_{geo}$, EF and CF were found to have no impact at most sites, with only low levels of pollution at the others. Using the PLI method, the MS2 and MS3 sites, located upstream, were assessed to be affected by anthropogenic contamination. Most importantly, Zn, Cu and Hg were found to be the elements responsible for most pollution, and they were highest at the upstream sites, implying pollution by domestic sewage and urban discharge.

Enrichment of rare alleles within epigenetic chromatin marks in the first intron

  • Jo, Shin-Sang;Choi, Sun Shim
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.9.1-9.5
    • /
    • 2019
  • In previous studies, we demonstrated that some sites in the first intron likely regulate gene expression. In the present work, we sought to further confirm the functional relevance of first intron sites by estimating the quantity of rare alleles in the first intron. A basic hypothesis posited herein is that genomic regions carrying more functionally important sites will have a higher proportion of rare alleles. We estimated the proportions of rare single nucleotide polymorphisms with a minor allele frequency < 0.01 located in several histone marks in the first introns of various genes, and compared them with those in other introns and those in 2-kb upstream regions. As expected, rare alleles were found to be significantly enriched in most of the regulatory sites located in the first introns. Meanwhile, transcription factor binding sites were significantly more enriched in the 2-kb upstream regions (i.e., the regions of putative promoters of genes) than in the first introns. These results strongly support our proposal that the first intron sites of genes may have important regulatory functions in gene expression independent of promoters.

Spatial and seasonal variations of organic carbon level in four major rivers in Korea

  • Lee, Jaewoong;Shin, Kisik;Park, Changhee;Lee, Seunghyun;Jin, Dal Rae;Kim, Yongseok;Yu, Soonju
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.84-90
    • /
    • 2016
  • Regionally the lowest average concentration of TOC was observed with 0.66 mg/L in Nakdong river, while the highest concentration of TOC was observed with 0.91 mg/L in Yeongsan river. The average concentration of TOC for national water quality monitoring site showed that the lowest average concentration of TOC was 1.58 mg/L in Han river, while the highest concentration of TOC was 3.37 mg/L in Yeongsan river. Seasonally, the average concentration of TOC at six upstream sites showed 0.77 mg/L and 0.56 mg/L, 0.69 mg/L and 0.63 mg/L, 0.80 mg/L and 0.73 mg/L, and 1.21 mg/L and 0.68 mg/L between wet season and dry season in Han river, Nakdong river, Gem river and Yeongsan river, respectively. For the national water quality site, the average concentration of TOC between wet season and dry season was 1.70 mg/L and 1.45 mg/L in Han river, 2.01 mg/L and 1.75 mg/L in Nakdong river, 2.01 mg/L and 1.60 mg/L in Gem river, and 3.75 mg/L and 3.00 mg/L in Yeongsan river. The distribution of TOC in upstream and national water quality monitoring sites on four major rivers have been influenced by seasonal and regional characteristics in Korea.

A Study on the Distribution of Streamside Vegetation in Kyonganchon (경안천에서 하천변 식생의 분포에 관한 연구)

  • Cho, Do-Soon
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.55-62
    • /
    • 1995
  • This study was conducted to investigate the distribution pattern of plants on streamside of Kyonganchon, which is a tributary of the Han River, and to determine the relationships between plant distribution and environmental factors. Fifteen study sites were selected along the Kyonganchon, and vegetation distribution pattern and soil environmental factors were determined. The most frequently ocurring species in the study sites were Persicaria thunbergii, Persicaria hydropiper, Echinochloa crus-galli and Bidens frondosa, and among them the two Persicaria species were dominants of the community. Many species showed different distribution along the stream:Chenopodium album, Equisetum arvense and Setaria viridies occurred in the upstream region, while Rumex crispus, Leonurus sibiricus and Rorippa islandica occurred in the middle and downstream regions. Analysis of soil properties showed that organic matter and clay content were higher in the upstream region while sand content was higher in the downstream region. The results of DCA ordination showed that axis one was positively correlated with organic matter and clay content and negatively correlated with sand content, indicating that the distribution pattern of vegetation along the Kyonganchon was determined by elevational gradient from upstream to downstream region or gradient of stream width and water level, and by soil organic matter content and soil texture related to these gradients.

  • PDF

Ecological structure and management of a creek of the Han River -In the case of sooipcheon and anyangcheon- (한강지천의 생태계 구조와 관리- 수입천과 안양천을 대상으로-)

  • 최송현;이경재;류창희;황성현
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.23 no.3
    • /
    • pp.132-143
    • /
    • 1995
  • Comprehensive development projects were carried out on the Han River from 1982 to 1986 for the purpose of creating a more serviceable places such as a riverside parks and autoroads and so on. However because of the river development, river ecosystem and function were destroyed. And many local autonomous entity follows comprehensive development projects as if it is a model case. To investigate the impact that the river development effects the river ecosystem, two sites which are Anyangcheon and Sooipcheon were surveyed in the right of around plants ecosystem and structure. Two sites are creek of the Hna River. Sooipcheon maintains the sound ecosystem. It has sufficient carrying capacity for the river recreation activity. The reason is that a hydrophyte absorbs nutrients from the stream and the river ecosystem meets the around terrestrial one neturally. Number of hydrophyte increase from upstream going forward to downstream. Number of hydrophyte increase from upstream going forward to downstream. Anyangchoen is seriously polluted stream out of many branch stream of the Han river. In the upstream various woody plants and hydrophyte appeared. But from the river developed area at midstream, naturalized plants dominated such as Bidens tripartita, panicum dichotomiflorum etc. To manage the creek ecologically, hydrophyts were introduced in partly for natural purification after rehavilitate the riverside, and steadily monitoring is demanded.

  • PDF

Analysis of Sediment Contamination Levels in the Giheung Reservoir (기흥저수지 퇴적물에 대한 오염도 분석)

  • Oh, Kyoung-Hee;Kim, Sung-Jin;Cho, Young-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.26-32
    • /
    • 2018
  • In order to analyze the effects of sediment on the occurrence of algal bloom on the Giheung Reservoir, the contamination levels of sediments were evaluated. The concentrations of various organic compounds (ignition loss), as well as the total nitrogen, total phosphorus, and heavy metals (Zn, Cr, Co, Ni, Pb, As, Hg, Cd) were analyzed in the sediments taken at eighteen sites of the reservoir. The concentrations of ignition loss and total nitrogen tended to increase from upstream to downstream, and ranged from 4.38 to 12.93% and 2,153 to 4,723 mg/kg, respectively. Heavy metals were in the order of Zn>Cr>Co>Ni>Pb>As>Hg, and the contamination level of the heavy metals was not high as a whole. The concentrations of the total phosphorus were in the range of 765 ~ 3,238 mg/kg, which exceeded the contamination level of the "Sediment Quality Assessment Guideline of River and Lake Sediment (Rule No. 2015-687 of the National Institute of Environmental Research, Korea)" at two upstream sites, four downstream sites, and all downstream sites. These results indicated that the pollution level of the total phosphorus, which is the main factor related to algal bloom, was found to be serious. Therefore, it is necessary to establish a countermeasure for sediment management in order to control the algal bloom which occurs periodically in the reservoir.

Seasonal variation in longitudinal connectivity for fish community in the Hotancheon from the Geum River, as assessed by environmental DNA metabarcoding

  • Hyuk Je Lee;Yu Rim Kim;Hee-kyu Choi;Seo Yeon Byeon;Soon Young Hwang;Kwang-Guk An;Seo Jin Ki;Dae-Yeul Bae
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.32-48
    • /
    • 2024
  • Background: Longitudinal connectivity in river systems strongly affects biological components related to ecosystem functioning, thereby playing an important role in shaping local biodiversity and ecosystem health. Environmental DNA (eDNA)-based metabarcoding has an advantage of enabling to sensitively diagnose the presence/absence of species, becoming an efficient/effective approach for studying the community structure of ecosystems. However, little attention has been paid to eDNA-based biomonitoring for river systems, particularly for assessing the river longitudinal connectivity. In this study, by using eDNA we analyzed and compared species diversity and composition among artificial barriers to assess the longitudinal connectivity of the fish community along down-, mid- and upstream in the Hotancheon from the Geum River basin. Moreover, we investigated temporal variation in eDNA fish community structure and species diversity according to season. Results: The results of species detected between eDNA and conventional surveys revealed higher sensitivity for eDNA and 61% of species (23/38) detected in both methods. The results showed that eDNA-based fish community structure differs from down-, mid- and upstream, and species diversity decreased from down to upstream regardless of season. We found that there was generally higher species diversity at the study sites in spring (a total number of species across the sites [n] = 29) than in autumn (n = 27). Nonmetric multidimensional scaling and heatmap analyses further suggest that there was a tendency for community clusters to form in the down-, mid- and upstream, and seasonal variation in the community structure also existed for the sites. Dominant species in the Hotancheon was Rhynchocypris oxycephalus (26.07%) regardless of season, and subdominant species was Nipponocypris koreanus (16.50%) in spring and Odontobutis platycephala (15.73%) in autumn. Artificial barriers appeared to negatively affect the connectivity of some fish species of high mobility. Conclusions: This study attempts to establish a biological monitoring system by highlighting the versatility and power of eDNA metabarcoding in monitoring native fish community and further evaluating the longitudinal connectivity of river ecosystems. The results of this study suggest that eDNA can be applied to identify fish community structure and species diversity in river systems, although some shortcomings remain still need to be resolved.

Molecular Structure and Organization of Crustacean Hyperglycemic Hormone Genes of Penaeus monodon

  • Wiwegweaw, Amporn;Udomkit, Apinunt;Panyim, Sakol
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.177-184
    • /
    • 2004
  • The Crustacean hyperglycemic hormone (CHH) has been shown to exist as multiple molecular forms in several crustacean species. In Penaeus monodon, a gene encoding CHH (so-called Pem-CHH1) was recently described. In this study, the molecular structures of two other CHH genes (Pem-CHH2 and Pem-CHH3) are reported. Both the Pem-CHH2 and Pem-CHH3 genes contain three exons that are separated by two introns that are similar to the structure of other genes in the same family. An analysis of the upstream nucleotide sequences of each Pem-CHH gene has identified the putative promoter element (TATA box) and putative binding sites for several transcription factors. The binding sites for CREB, Pit-1, and AP-1 were found upstream of all three Pem-CHH genes. A Southern blot analysis showed that at least one copy of each Pem-CHH gene was located within the same 10 kb genomic DNA fragment. These results suggest that the CHH genes are arranged in a cluster in the genome of P. monodon, and that their expression may be modulated by similar mechanisms.