• Title/Summary/Keyword: Upslope

Search Result 38, Processing Time 0.021 seconds

A numerical study of the orographic effect of the Taebak mountains on the increase of the downslope wind speed near Gangnung area (태백산맥의 지형적인 효과와 관련된 강릉 지역의 강풍 사례에 대한 수치모의 연구)

  • 이재규
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1245-1254
    • /
    • 2003
  • A numerical simulation for 11 February 1996 has been done to grasp main mechanisms of the occurrence of strong downslope winds near Gangnung area. The simulation performed by using ARPS (Advanced Regional Prediction System) showed that enhanced surface winds were not related with a reflection of vertically propagating gravity waves. Froude numbers were about 1.0, 0.4 and 0.6 for the atmosphere above Daekwanryoung and above a place located 220km upstream, and above another place located 230km downstream from the Taebak mountains, respectively. This suggested that as a subcritical flow ascended the upslope side of the Taebak mountains, Froude numbers would tend to increase according to the increase in wind speed, and near the crest the flow would become supercritical and continue to accelerate as it went down the downslope side until it was adapted back to the ambient subcritical conditions in a turbulent hydraulic jump. Simulated Froude numbers corroborated the hydraulic jump nature of the strong downslope wind. In addition, the inversion was found near the mountain top height upstream of the mountains, and it was favorable for the occurrence of strong downslope winds.

Characteristics of Wind Direction Shear and Momentum Fluxes within Roughness Sublayer over Sloping Terrain (경사가 있는 지형의 거칠기 아층에서 풍향시어와 운동량 플럭스의 특성)

  • Lee, Young-Hee
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.591-600
    • /
    • 2015
  • We have analyzed wind and eddy covariance data collected within roughness sublayer over sloping terrain. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree. This study examines the directional wind shear for data collected at three levels in the lowest 10 m in the roughness sublayer. The wind direction shear is caused by drag of roughness element and terrain-induced motions at this site. Small directional shear occurs when wind speed at 10 m is strong and wind direction at 10 m is southerly which is the same direction as upslope flow near surface at this site during daytime. Correlation between vertical shear of lateral momentum and lateral momentum flux is smaller over steeply sloped surface compared to mildly sloped surface and lateral momentum flux is not down-gradient over steeply sloped surface. Quadrant analysis shows that the relative contribution of four quadrants to momentum flux depends on both surface slope and wind direction shear.

Evaluation of seismic p-yp loops of pile-supported structures installed in saturated sand

  • Yun, Jungwon;Han, Jintae;Kim, Doyoon
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.579-586
    • /
    • 2022
  • Pile-supported structures are installed on saturated sloping grounds, where the ground stiffness may decrease due to liquefaction during earthquakes. Thus, it is important to consider saturated sloping ground and pile interactions. In this study, we conduct a centrifuge test of a pile-supported structure, and analyze the p-yp loops, p-yp loops provide the correlation between the lateral pile deflection (yp) and lateral soil resistance (p). In the dry sand model (UV67), the p-yp loops stiffness increased as ground depth increased, and the p-yp loops stiffness was larger by approximately three times when the pile moved to the upslope direction, compared with when it moved to the downslope direction. In contrast, no significant difference was observed in the stiffness with the ground depth and pile moving direction in the saturated sand model (SV69). Furthermore, we identify the unstable zone based on the result of the lateral soil resistance (p). In the case of the SV69 model, the maximum depth of the unstable zone is five times larger than that of the dry sand model, and it was found that the saturated sand model was affected significantly by kinematic forces due to slope failure.

A Study on Stabilization of the Collapsed Slope due to Gyeongju Earthquake at Seokguram Access Road based on Geological Investigation (지질학적 조사를 바탕으로 한 경주지진으로 붕괴된 석굴암 진입도로 비탈면의 안정성 평가에 관한 연구)

  • Kim, Seung-Hyun;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.225-242
    • /
    • 2019
  • Rockfall failure at the access road to Seokguram were occurred due to the earthquake on September 12, 2016. A detailed investigation was carried out in order to find out the cause of the rockfall, to identify the risk of the entire sites, and to prepare proper countermeasure methods and mitigation. We checked for geological and topographical characteristics of overall slopes alongside the access road to Seokguram and made a face map. In addition, we analyzed topographical factors caused by the earthquake through calculating a degree of slope, degree of bearing, upslope contributing area, and wetness index with the use of shading relief map. As a result, we confirmed that the large rockfall occurred with a weak section. In this study, we also evaluated the overall slope stability of the entire access road to Seokguram in order to classify it into danger and caution zones depending on the risk of collapse.

Centrifuge modelling of pile-soil interaction in liquefiable slopes

  • Haigh, Stuart K.;Gopal Madabhushi, S.P.
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • Piles passing through sloping liquefiable deposits are prone to lateral loading if these deposits liquefy and flow during earthquakes. These lateral loads caused by the relative soil-pile movement will induce bending in the piles and may result in failure of the piles or excessive pile-head displacement. Whilst the weak nature of the flowing liquefied soil would suggest that only small loads would be exerted on the piles, it is known from case histories that piles do fail owing to the influence of laterally spreading soils. It will be shown, based on dynamic centrifuge test data, that dilatant behaviour of soil close to the pile is the major cause of these considerable transient lateral loads which are transferred to the pile. This paper reports the results of geotechnical centrifuge tests in which models of gently sloping liquefiable sand with pile foundations passing through them were subjected to earthquake excitation. The soil close to the pile was instrumented with pore-pressure transducers and contact stress cells in order to monitor the interaction between soil and pile and to track the soil stress state both upslope and downslope of the pile. The presence of instrumentation measuring pore-pressure and lateral stress close to the pile in the research described in this paper gives the opportunity to better study the soil stress state close to the pile and to compare the loads measured as being applied to the piles by the laterally spreading soils with those suggested by the JRA design code. This test data shows that lateral stresses much greater than one might expect from calculations based on the residual strength of liquefied soil may be applied to piles in flowing liquefied slopes owing to the dilative behaviour of the liquefied soil. It is shown at least for the particular geometry studied that the current JRA design code can be un-conservative by a factor of three for these dilation-affected transient lateral loads.

Spatial Pedological Mapping Using a Portable X-Ray Fluorescence Spectrometer at the Tallavera Grove Vineyard, Hunter Valley

  • Jang, Ho-Jun;Minasny, Budiman;Stockmann, Uta;Malone, Brendan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.635-643
    • /
    • 2016
  • Wine consumers desire to drink a high quality wine. For producing high quality wine, high quality soil is required. Conventionally, soil quality is assessed qualitatively. Using traditional laboratory methods, quantitative data can be obtained for management purpose, but it is time consuming and expensive. Therefore, new technology aims to address these limitations, namely portable X-Ray fluorescence spectrometers (pXRF). This instrument can be used directly in the field, requires no soil sample preparations, and can simultaneously measure a wide range of elements qualitatively that are useful for pedological studies. The chemical composition (Ca, Fe, Ti and Zr) of soils at Tallavera Grove vineyard in New South Wales, Australia, was studied using a pXRF. The analysis of the soil's elemental concentration (i.e. Ca and Fe) using pXRF supports management decisions. Measuring the soil's Ca concentration can be used to identify Ca-rich parent materials (limestone). The limestone indicates good soil conditions for vine production. Fe content was used to identify areas of texture-contrast soils or soil with accumulation of clays in the B horizon. In addition, a soil weathering index was calculated using elemental concentrations (i.e. Ti and Zr) to explore the history of soil formation for making decision of management. This index showed that the soil in the vineyard was affected by two processes: the deposition of materials from elsewhere (Aeolian transport or soil erosion) and mixing of materials from upslope.

Analyzing the Disaster Vulnerability of Mt. Baekdusan Area Using Terrain Factors (지형 요소를 고려한 백두산 지역의 위험도 분석)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol;Lee, Kyu-Hwan;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.605-614
    • /
    • 2013
  • Most steep slope failures tend to take place in geographically unstable areas. Mt. Baekdusan is known as a potentially active volcano in a typical mountainous terrain. This study prepared a digital elevation model of Mt. Baekdusan area and created a hazard map based on topographical factors and structural lineament analysis. Factors used in vulnerability analysis included geographical data involving aspect and slope distribution, as well as contributory area of upslope, tangential gradient curvature, profile gradient curvature, and the distribution of wetness index among the elements that comprise topography. In addition, the stability analysis was conducted based on the lineament intensity map. Concerning the disaster vulnerability of Mt. Baekdusan region, the south and south west area of Mt. Baekdusan has a highest risk of disaster (grade 4-5) while the risk level decreases in the north eastern region.

An Analysis of Low-level Stability in the Heavy Snowfall Event Observed in the Yeongdong Region (영동지역 대설 사례의 대기 하층 안정도 분석)

  • Lee, Jin-Hwa;Eun, Seung-Hee;Kim, Byung-Gon;Han, Sang-Ok
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.209-219
    • /
    • 2012
  • Extreme heavy snowfall episodes have been investigated in case of accumulated snowfall amount larger than 50 cm during the past ten years, in order to understand the association of low-level stability with heavy snowfall in the Yeongdong region. In general, the selected 4 events have similar synoptic setting such as the Siberian High extended to East Sea along with the Low passing by the southern Korean Peninsula, eventually inducing easterly in the Yeongdong region. Specifically moist-adiabatically neutral layer has been observed during the heavy snowfall period, which was easily identified using vertical profiles of equivalent potential temperature observed at Sokcho, whereas convective unstable layer has been formed over the East sea due to relatively warm sea surface temperature (SST) about $8{\sim}10^{\circ}C$ and lower temperature around 1~2 km above the surface, obtained from RDAPS. Difference of equivalent potential temperature between 850 hPa and surface as well as difference between air and sea temperatures altogether gradually increased before the snowfall period. Instability-induced moisture supply to the atmosphere from the East sea, being cooled and saturated by the upper cold surge, would make low-level ice cloud, and eventually move inland by the easterly flow. Heavy snowfall will be enhanced in association with low-level convergence by surface friction and upslope wind against Taebaek mountains. This study emphasizes the importance of low level stability in the Yeongdong region using the radiosonde sounding and RDAPS data, which should quantitatively be examined through numerical model as well as heat and moisture supply from the ocean.

An Analysis of the Wintertime Diurnal Wind Variation and Turbulent Characteristics over Yongpyong Alpine Slope (용평 알파인 경기장에서 겨울철 바람의 일변화 및 난류 특성분석)

  • Jeon, Hye-Rim;Kim, Byung-Gon;Eun, Seung-Hee;Lee, Young-Hee;Choi, Byoung-Cheol
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.401-412
    • /
    • 2016
  • A 3D sonic anemometer has been installed at Yongpyong alpine slope since Oct. 23th 2014 to observe the slope winds and to analyze turbulent characteristics with the change in surface cover (grass and snow) and the synoptic wind strength. Eddy covariance method has been applied to calculate the turbulent quantity after coordinate transformation of a planar-fit rotation. We have carefully selected 3 good episodes in the winter season (23 October 2014 to 28 February 2015) for each category (9 days in total), such as grass and snow covers in case of weak synoptic wind condition, and grass cover of strong synoptic wind. The diurnal variations of the slope winds were well developed like the upslope wind in the daytime and downslope wind in the nighttime for both surface covers (grass and snow) in the weak synoptic forcing, when accordingly both heat and momentum fluxes significantly increased in the daytime and decreased in the nighttime. Meanwhile, diurnal variation of heat flux was not present on the snow cover probably in associated with significant fraction of sunlight reflection due to high albedo especially during the daytime in comparison to those on the grass cover. In the strong synoptic regime, the most dominant feature at Yongpyong, only the southeasterly downslope winds were steadily generated irrespective of day and night with significant increases in momentum flux and turbulent kinetic energy as well, which could suggest that local circulations are suppressed by the synoptic scale forcing. In spite of only one season analysis applied to the limited domain, this kind of an observation-based study will provide the basis for understanding of the local wind circulation in the complex mountain domain such as Gangwon in Korea.

Effective Water Resources Development by the Management of Sediment Deposit in Agricultural Reservoirs (농업용 저수지의 퇴적토사 관리를 통한 효율적 수자원 개발)

  • Son, Kwang-Ik;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.467-477
    • /
    • 2004
  • Effective management of water resources in Korea becomes very important in recent years. Especially, the management of reservoirs cannot be over emphasized. The status of sediment deposit and the dredging records of agricultural reservoirs were examined to find out at e reservoir retention capacity could be raised more than 10% of the total volume of reservoirs in Kyungbook Province. Sediment prediction methods were developed by combining the estimation mothods of geomorphological characteristics and upslope contribution area in GIS, The estimated sediment depsit amount were compared with the dredging records for three agricultural reservoires. It was found that the distributed model with ‘Flow accumulation’ and ‘Multiple Flow Direction Algorithm’ gives good prediction results for mountaineous area.