• Title/Summary/Keyword: Upsetting Pressure

Search Result 41, Processing Time 0.024 seconds

Study on Friction Welding of Torsion Bar Material(1) -Optimization of Friction Welding Technique- (토션 바재의 마찰용접에 관한 연구(I) -마찰용접기술의 최적화에 대하여-)

  • 오세규;이종두
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.101-109
    • /
    • 1990
  • The friction welding has more technical and economic advantages than the other welding processes. As this welding process has the characteristics such as curtailment of production time, materials, cost reduction, etc., it has been widely used in production of various mechanical components which have complex shapes. So, this paper deals with optimizing the friction welding conditions and analyzing various mechanical properties of the friction welded joints of torsion bar material SUP9A bar to bar. The results obtained are summarized as follows; 1) The quantitative relation between heating time($t_{1}$, sec) and total upset(U, mm)can be obtained. The empirical formula obtained is ; U = 3.29$t_{1}$ + 1.6 2) The tensile strength($\sigma_{t}$, kgf/$mm^{2}$) of friction welding joints as post weld heat treated(PWHT) depends upon heating time($t_{1}$, sec) quantitatively and the empirical formula obtained is ; $\sigma$= -5.1$t_{1}\;^{2}$+44.90$t_{1}$+45.2 3) It is certain that the optimum condition for friction welded joints of SUP9A steel bars of diameter 14.5mm is, considering on various properties such as tensile strength, torsional strength, impact energy and strain of the joints after PWTH ; n = 2000rpm, $P_{1}$=8kgf/$mm^{2}$, $P_{2}$=20kgf/$mm^{2}$, $t_{1}$=4sec, $t_{2}$=3sec 4) The tensile strength, torsional strength and hardness were increased with the increased with the increasing carbon equivalent, but toughness was decreased.

  • PDF

Friction Welding and AE Characteristics of Magnesium Alloy for Lightweight Ocean Vehicle (해양차량 경량화용 마그네슘합금의 마찰용접 및 AE 특성)

  • Kong, Yu-Sik;Lee, Jin-Kyung;Kang, Dae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, friction welded joints were constructed to investigate the mechanical properties of welded 15-mm diameter solid bars of Mg alloy (AZ31B). The main friction welding parameters were selected to endure reliable quality welds on the basis of visual examination, tensile tests, impact energy test, Vickers hardness surveys of the bonds in the area and heat affected zone (HAZ), and macrostructure investigations. The study reached the following conclusions. The tensile strength of the friction welded materials (271 MPa) was increased to about 100% of the AZ31B base metal (274 MPa) under the condition of a heating time of 1 s. The metal loss increased lineally with an increase in the heating time. The following optimal friction welding conditions were determined: rotating speed (n) = 2000 rpm, heating pressure (HP) = 35 MPa, upsetting pressure (UP) = 70 MPa, heating time (HT) = 1 s, and upsetting time (UT) = 5 s, for a metal loss (Mo) of 10.2 mm. The hardness distribution of the base metal (BM) showed HV55. All of the BM parts showed levels of hardness that were approximately similar to friction welded materials. The weld interface of the friction welded parts was strongly mixed, which showed a well-combined structure of macro-particles without particle growth or any defects. In addition, an acoustic emission (AE) technique was applied to derive the optimum condition for friction welding the Mg alloy nondestructively. The AE count and energy parameters were useful for evaluating the relationship between the tensile strength and AE parameters based on the friction welding conditions.

A study on Net-shape technology of Automotive Lock-up Hub using Cold back pressure forming (배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구)

  • Kwon, Y.C.;Lee, J.H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.173-176
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. This study proposes a new method for manufacturing of high manufacturing productivity, production process reduction and low cost through back pressure forming. The Lock-up hub is manufactured through many processes, such as upsetting($1^{st}$ Forming), piercing, direct extrusion($2^{nd}$ Forming), final sizing process($3^{rd}$ Forming). In this study, process design for closed-die forging of a Lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of Lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

  • PDF

A Study of Forging Equipment for One Body Crankshaft of Medium Sized Marine Engine (선박 중형엔진 일체형 Crankshaft 제작용 형단조장치 기술개발에 관한 연구)

  • 윤성만
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.107-110
    • /
    • 1999
  • The purpose of this research is for the development of a new type forging equipment H.C.G(Hyundai Continuous Grain-flow) by using two virtual build-up tools rigid viscoplastic FEM and downsized plasticine experiment. This forging equipment consists of consecutive horizontal and vertical pressure while the traditional forging method consists of only vertical pressure. Using this method high quality crankshafts can be forged as it can maintain a continuous grain flow. The factors considered in the development of equipment are die geometry for flawless deformed shape die reaction forces stress/strain distributions and continuous material flow. We carried out several numerical simulations and downsized plasticine experiments for the proper design of the forging equipment. The validity of those simulation results is confirmed by checking with the actual test results. Based on these simulation results the proper design of the H.C.G for ging equipment is enabled.

  • PDF

A Study of Interface Heat Transfer Coefficient Between Die and Workpiece for Hot Forging (열간단조시 금형과 소재간 계면열전달계수에 관한 연구)

  • Kwon J. W.;Lee J. H.;Lee Y. S.;Kwon Y. N.;Bae W. B.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.460-465
    • /
    • 2005
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change for the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The closed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, A16061, and Cu-OFHC were used to analyze the effect of material. The coefficient was increased with step-up of pressure between die and workpiece. And, A16061 was larger than that of the AISI1045 and Cu-OFHC up to the five times.

A study of interface heat transfer coefficient between die and workpiece for hot forging (열간단조시 금형과 소재간 계면열전달계수에 관한 연구)

  • Kwon J.W.;Lee Y.S.;Kwon Y.N.;Lee J.H.;Bae W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.122-126
    • /
    • 2004
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change fur the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The sealed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, Al6XXX, and Pure-Cupper were used to analyze effects according to the material. The coefficient was increased with step-up of pressure between die and workpiece. And, Al6XXX was larger than the AISI1045 and Pure-Cupper up to the five times.

  • PDF

The Relationship between Welding Conditions and Ultrasonic Reflection Coefficients of Dissimilar Metals Friction Welded Joints (이종재 막찰용접 이음부에서의 초음파 반사계수와 용접조건과의 관계)

  • 오세규;김동조;한상덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.138-143
    • /
    • 1987
  • Friction welding has emerged as a reliable process for high-production commercial applications with significant economic and technical advantages. But nondestructive test in friction weld was not clearly developed. Therefore the experimental verification is necessary in order to understand the characteristcs of the pulse echo effects according to various change in welding conditions. This paper presents an attempt to determine the relationship between the varios welding conditions and the coefficients of reflection using the ultrasonic pulse echo method in dissibilar metals friction weld. The new approach of calculating the coefficients of reflection based on measured amplitudes of the echoes is applied in this paper. These coefficients provides a single quantitative measurement which involves both acoustic energy reflected at the welded interface as well as transmitted across the interface. As a result, it was known that the quantitave relationship between welding conditions and the coefficients of reflection using the ultrasonic pulse echo exists in dissimilar metals friction weld.

  • PDF

A Study to improve dimensional accuracy of forged gear (단조기어 정밀도 향상을 위한 연구)

  • Lee, Y.S.;Jung, T.W.;Lee, J.H.;Cho, J.R.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.129-134
    • /
    • 2009
  • The dimension of forged part is different from that of die. Therefore, a more precise die dimension is necessarys to produce the precise part, considering the dimensional changes from forging die to final part. In this paper, both experimental and FEM analysis are performed to investigate the effect of several features including die dimension at each forging step and heat-treatment on final part accuracy in the closed-die upsetting. The dimension of forged part is checked at each stage as machined die, cold forged, and post-heat-treatment steps. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the DEFORM-$2D^{TM}$. The effect of residual stress after heat-treatment on forged part could be considered successfully by using DEFOAM-$HT^{TM}$.

  • PDF

Friction Welding of Spheroidal Graphite Cast Iron and 2024 Aluminium Alloys using Insert Metal (삽입금속을 사용한 구상흑연주철과 2024 알루미늄합금의 마찰압접에 관한 연구)

  • KIM CHANG-GYU;KIM CHI-OK;KIM KWANG-ILL
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.76-81
    • /
    • 2003
  • Friction welding of GCD45 spheroidal graphite cast iron and 2024 aluminum alloy has been studied, especially in terms of the joint faces and strength of friction welding. For appropriate results of the friction welding of GCD45 graphite cast iron and 2024 aluminum alloy, an insert of A1050 pure aluminum metal was used. The joint strength of the A1050 pure aluminum insert approached the maximum strength of 165.7Mpa, compared to 128MPa for the joint between GCD45 graphite cast iron and A1050 pure aluminum without the insert metal. Maximum strength, 165.7Mpa, was possible for the following optimum conditions: 20MPa for the friction pressure, P1, 60MPa for the upsetting pressure, P2, 1 second for the friction time, t1, 3000rpm for the rotation, N, and 0.3 seconds for the brake time, tB.

Study on the Frition Welding Characteristics of Oxygen Free High Conductivity Copper (무산소동의 마찰 용접 특성에 관한 연구)

  • 정호신;소전강
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 1997
  • Copper and its alloy had been used widely because of its pronouncing characteristics on their high thermal and electrical conductivity. Various fusion welding methods, such as SMAW, SAW, GTAW, GMAW, Electroslag welding amd so on are applied to weld copper and its alloy. But fusion welding of copper has so many welding problems. THe most serious problems were poor penetration amd high thermal contration stress due to its high thermal conductivity and porosity could be formed by rapid cooling rate of fusion welding. In order to avoid such fusion welding problems, preheating, peering and heat treatment must be applied to obtain sound weld joint of copper. But preheating induce another welding problem such as grain coarsening of weld heat affected zone. This grain coarsening reduces ductility and strength of weld joint. In this view of point, friction welding of copper is triedm to obtain sound weld joint of copper by reducing metallurgical problems. This study introduced new concept of heat input for evaluating the friction weldability of copper. As a result, weldability of copper could be evaluated by this new concept of heat input.

  • PDF