• Title/Summary/Keyword: Upper-air observation

Search Result 55, Processing Time 0.022 seconds

Water Physiology of Panax ginseng. 1. Habitat observation. cultural experience, weather factors and characteristics of root and leaf (인삼의 수분생리 1. 자생지관찰.재배 경험.기상요인과 근 및 엽의 특성)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.4 no.2
    • /
    • pp.197-221
    • /
    • 1980
  • Habitat observation, cultural experience of old and present plantation, weather factors in relation to crop stand and water physiology of root and leaf were reviewed. According to habitat observation ginseng plants love water but plate wit talus well grow at drained place with high moisture content in air and soil while ginseng plants were not found in dry or wet place. According to cultivation experience ginseng plants require abundant water in nursery and main field but most old planters believe that ginseng plaints are draught-loving thus require little water. The experience that rain especially in summer i.e unfavorable might be due to mechanical damage of leaves arid leaf disease infection, or severe leaf fall which is caused by high air temperature and coinsided with rain. According to crop stand observation in relation to weather factors abunsant water increased each root weight but decreased total yield indicating tile increase of missing root rate. Rain in summer was unfavorable too. Though rain in June was favorable for high yield general experience that cloudy day and rain were unfavorable might be due to low light intensity under shade. Present leading planters also do loot consider the importance of water in main field. Water content is higher in top than in root and highest in central portion of root and in stem of top. For seedling the heavier the weight of root is tile higher the water content while it reveries from two years old. Water potential of intact root appeared to be -2.89 bar suggesting high sensitivity to water environment. Under water stress water content severly decreased only in leaf. Water content of leaf appeared to be 78% for optimum, below 72% for functional damage and 68% for perm anent wilting. Transpiration or curs Principally through stomata in lower side of leaf thus contribution of upper side transpiration decreased with the increase of intensity. Transpiration is greater in the leaves grown under high light intensity. Thus water content is lower with high light inte nsity under field condition indicating that light is probable cause of water stress in field. Transpiration reached maximum at 10K1ut The decrease of transpiration at higher temperature seems to be due to the decrease of stomata aperture caused by water stress. Severe decrease of photosynthesis under water stress seems to be principally due to functional damage which is not caused by high temperature and Partly due to poor CO2 supply. Water potential of leaf appeared to be -16.8 bar suggesting weakness in draught tolerance. Ginseng leaves absorb water under high humidity. Water free space of leaf disc is %mailer than that of soybean leaf and water uptake appears to be more than two steps.

  • PDF

Development of the Global-Korean Aviation Turbulence Guidance (Global-KTG) System Using the Global Data Assimilation and Prediction System (GDAPS) of the Korea Meteorological Administration (KMA) (기상청 전지구 수치예보모델을 이용한 전지구 한국형 항공난류 예측시스템(G-KTG) 개발)

  • Lee, Dan-Bi;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.223-232
    • /
    • 2018
  • The Global-Korean aviation Turbulence Guidance (G-KTG) system is developed using the operational Global Data Assimilation and Prediction System of Korea Meteorological Administration with 17-km horizontal grid spacing. The G-KTG system provides an integrated solution of various clear-air turbulence (CAT) diagnostics and mountain-wave induced turbulence (MWT) diagnostics for low [below 10 kft (3.05 km)], middle [10 kft (3.05 km) - 20 kft (6.10 km)], and upper [20 kft (6.10 km) - 50 kft (15.24 km)] levels. Individual CAT and MWT diagnostics in the G-KTG are converted to a 1/3 power of energy dissipation rate (EDR). 12-h forecast of the G-KTG is evaluated using 6-month period (2016.06~2016.11) of in-situ EDR observation data. The forecast skill is calculated by area under curve (AUC) where the curve is drawn by pairs of probabilities of detection of "yes" for moderate-or-greater-level turbulence events and "no" for null-level turbulence events. The AUCs of G-KTG for the upper, middle, and lower levels are 0.79, 0.69, and 0.63, respectively. Comparison of the upper-level G-KTG with the regional-KTG in East Asia reveals that the forecast skill of the G-KTG (AUC = 0.77) is similar to that of the regional-KTG (AUC = 0.79) using the Regional Data Assimilation and Prediction System with 12-km horizontal grid spacing.

A Case Study on the Meteorological Observation in Spring for the Atmospheric Environment Impact Assessment at Sangin-dong Dalbi Valley, Daegu (대기환경영향평가를 위한 대구광역시 상인동 달비골의 봄철 기상관측 사례분석)

  • Park, Jong-Kil;Jung, Woo-Sik;Hwang, Soo-Jin;Yoon, Ill-Hee;Park, Gil-Un;Kim, Sin-Ho;Kim, Seok-Cheol
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1053-1068
    • /
    • 2008
  • This study aims to produce fundamental database for Environment Impact Assessment by monitoring vertical structure of the atmosphere due to the mountain valley wind in spring season. For this, we observed surface and upper meteorological elements in Sangin-dong, Daegu using the rawinsonde and automatic weather system(AWS). In Sangin-dong, the weather condition was largely affected by mountains when compared to city center. The air temperature was low during the night time and day break, and similar to that of city center during the day time. Relative humidity also showed similar trend; high during the night time and day break and similar to that of city center during the day time. Solar radiation was higher than the city, and the daily maximum temperature was observed later than the city. The synoptic wind during the measurement period was west wind. But during the day time, the west wind was joined by the prevailing wind to become stronger than the night time. During the night time and daybreak, the impact of mountain wind lowered the overall temperature, showing strong geographical influence. The vertical structure of the atmosphere in Dalbi valley, Sangin-dong had a sharp change in air temperature, relative humidity, potential temperature and equivalent potential temperature when measured at the upper part of the mixing layer height. The mixing depth was formed at maximum 1896m above the ground, and in the night time, the inversion layer was formed by radiational cooling and cold mountain wind.

Characteristics of Snow-cell Formation Processes over the Southern Part of Yellow Sea on 4 February 2004 using the KEOP Intensive Observation Data (KEOP 집중관측자료를 활용한 2004년 2월 4일 황해 남부해상의 강설세포 형성과정 특성 분석)

  • Kim, Baek-Jo;Cho, Chun-Ho;Ryu, Chan-Su;Chung, Hyo-Sang
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1401-1409
    • /
    • 2007
  • The formation mechanism of the snow cells of the Yellow Sea associated with snowfall over the southwestern part of Korea on 4 February, 2004 has been investigated using special upper-air sounding and radar data obtained for the KEOP(Korea Enhanced Observing Period) Intensive Observing Period(IOP). Results show that the types of snow cells for the selected period are classified into L(Longitudinal)-mode, Low-level convergence, and T(Transverse)-mode with their evolution from L-mode to T-mode. In particular, the existence of low-level warm and humid layer associated with temporally southwesterly inflow for about 4 hours provides a favorable condition in forming the T-mode snow cells. The vertical depth of the T-mode snow cells is deeper than that of L-mode ones due to the southeastward penetration of cold and dry air into relatively warm and humid air. In addition, it is found that wind shear vector between 1000 hPa and 600 hPa is one of the factors which control the orientation of snow cells in formation embedded into the snowbands for the both modes.

Structure of Mesoscale Heavy Precipitation Systems Originated from the Changma Front (장마전선 상에서 발생한 중규모 호우계 구조에 대한 연구)

  • Park, Chang-Geun;Lee, Tae-Young
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.317-338
    • /
    • 2008
  • Analyses of observational data and numerical simulations were performed to understand the mechanism of MCSs (Mesoscale Convective Systems) occurred on 13-14 July 2004 over Jindo area of the Korean Peninsula. Observations indicated that synoptic environment was favorable for the occurrence of heavy rainfall. This heavy rainfall appeared to have been enhanced by convergence around the Changma front and synoptic scale lifting. From the analyses of storm environment using Haenam upper-air observation data, it was confirmed that strong convective instability was present around the Jindo area. Instability indices such as K-index, SSI-index showed favorable condition for strong convection. In addition, warm advection in the lower troposphere and cold advection in the middle troposphere were detected from wind profiler data. The size of storm, that produced heavy rainfall over Jindo area, was smaller than $50{\times}50km^2$ according to radar observation. The storm developed more than 10 km in height, but high reflectivity (rain rate 30 mm/hr) was limited under 6 km. It can be judged that convection cells, which form cloud clusters, occurred on the inflow area of the Changma front. In numerical simulation, high CAPE (Convective Available Potential Energy) was found in the southwest of the Korean Peninsula. However, heavy rainfall was restricted to the Jindo area with high CIN (Convective INhibition) and high CAPE. From the observations of vertical drop size distribution from MRR (Micro Rain Radar) and the analyses of numerically simulated hydrometeors such as graupel etc., it can be inferred that melted graupels enhanced collision and coalescence process of heavy precipitation systems.

Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones (기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석)

  • Chong, Jihyo;Shin, Seungsook;Hwang, Sung Eun;Lee, Seungho;Lee, Seung-Hyeop;Kim, Baek-Jo;Kim, Seungbum
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.575-587
    • /
    • 2020
  • Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.

On the Characteristics of Vertical Atmospheric Structure in the Western Coastal Region through the Intensive Observation Period (집중관측을 통한 서해연안의 대기 수직구조 특성)

  • 문승의;노재식
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.335-348
    • /
    • 1998
  • The intensive meteorological observations including pibal balloon at Ungcheon, airsonde and 10m meteorological tower observations at Gulup-Do, where are located In the western coastal region, are taken to Investigate the characteristics of the upper and lower atmospheric structure and the local circulation pattern during the period of 17 to 22 September 1996. The diurnal variations of weather elements(i.e. air temperature, humidity, pressure, and Und speeds at Gulup-Do are analyzed and discussed with those at four inland meteorological stations. The vertical profiles of wind vector, ortho- gonality(Ω), and shear obtained from the pibal obsenrations are also presented to examine the change of wand structure according to the synoptic-scale pressure system's movement. The diurnal temperature changes at Gulup-Do are more sensitive than that of Inland meteorological stations In case of the mow of southwesterlies but are not dominant due to the ocean effect under the Influence of relatively cold northerlies. A well defined mixed layer Is developed from the 500m to the maximum 1700m with a significant capping Inversion layer on the top of it. It can be found from the vertical profiles of wind vector that the wind become generally strong at the interface heights between cloud lay- ers and non-cloud layers. The maximum Und shear Is appeared at the bel각t where the varlauon of wand direction Induced by the passage of synoptic-scale pressure system Is accompanied with the In- crease of Und speed. Based on the wind orthogonality, the change of wind direction with height is more complicated In cloudy day than In clear day. In case of a fair weather, the change of wand direction is showed to be at around 2km.

  • PDF

Relationship between Low-level Clouds and Large-scale Environmental Conditions around the Globe

  • Sungsu Park;Chanwoo Song;Daeok Youn
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.712-736
    • /
    • 2022
  • To understand the characteristics of low-level clouds (CLs), environmental variables are composited on each CL using individual surface observations and six-hourly upper-air meteorologies around the globe. Individual CLs has its own distinct environmental conditions. Over the eastern subtropical and western North Pacific Ocean in JJA, stratocumulus (CL5) has a colder sea surface temperature (SST), stronger and lower inversion, and more low-level cloud amount (LCA) than the climatology whereas cumulus (CL12) has the opposite characteristics. Over the eastern subtropical Pacific, CL5 and CL12 are influenced by cold and warm advection within the PBL, respectively but have similar cold advection over the western North Pacific. This indicates that the fundamental physical process distinguishing CL5 and CL12 is not the horizontal temperature advection but the interaction with the underlying sea surface, i.e., the deepening-decoupling of PBL and the positive feedback between shortwave radiation and SST. Over the western North Pacific during JJA, sky-obscuring fog (CL11), no low-level cloud (CL0), and fair weather stratus (CL6) are associated with anomalous warm advection, surface-based inversion, mean upward flow, and moist mid-troposphere with the strongest anomalies for CL11 followed by CL0. Over the western North Pacific during DJF, bad weather stratus (CL7) occurs in the warm front of the extratropical cyclone with anomalous upward flow while cumulonimbus (CL39) occurs on the rear side of the cold front with anomalous downward flow. Over the tropical oceans, CL7 has strong positive (negative) anomalies of temperature in the upper troposphere (PBL), relative humidity, and surface wind speed in association with the mesoscale convective system while CL12 has the opposite anomalies and CL39 is in between.

Meteorological Mechanisms Associated with Long-range Transport of Asian Dust Observed at the West Coast of North America in April 2001

  • Song Sang-Keun;Kim Yoo-Keun;Moon Yun-Seob
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E1
    • /
    • pp.1-14
    • /
    • 2004
  • Meteorological mechanisms in association with long-range transport of Asian dust in April 2001 have been investigated using weather maps, satellite images, TOMS and surface $PM_{10}$ data, backward trajectories, plus modeling output results (geopotential heights, horizontal wind vectors, potential temperatures, and streamlines). The results indicated that long -range transport of Asian dust to the west coast of North America was associated with strong westerlies between the Aleutian low and the Pacific high acting as a conveyor belt. Accelerating westerly flows due to cyclogenesis at the source regions over East Asia transported pollution from the continent to the central Pacific. When the system reached the Aleutian Islands, the intensity of troughs and the westerlies were amplified in the North Pacific. Thereafter the winds between the Aleutian Islands and the Pacific Ocean were more intensified from the air flow transport of the conveyor belt. Consequently, the strong wind in the conveyor belt enhanced the dust transport from the Pacific Ocean to the west coast of North America. This was evidenced by $PM_{10}$ concentration (maximum of about $100{\mu}g\;m^{-3}$) observed In California. Further evidence of the dust transport was found through the observation of satellite images, the distribution of TOMS aerosol index, and the analyses of streamlines and backward trajectories.

Characteristics of a Wind Map over the Korean Peninsula Based on Mesoscale Model WRF (중규모 모델 WRF로부터 모의된 한반도 풍력-기상자원 특성)

  • Byon, Jae-Young;Choi, Young-Jean;Seo, Beom-Keum
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.195-210
    • /
    • 2010
  • This study uses mesoscale model WRF to investigate characteristics of wind fields in South Korea, a region with a complex terrain. Hourly wind fields were simulated for one year representing mean characteristics of an 11-year period from year 1998 to year 2008. The simulations were performed on a nested grid from 27 km down to 1 km horizontal resolution. Seasonal variation of wind speed indicates that wind is strongest during the spring and winter seasons. Spatial distribution of mean wind speed shows wind energy potential at its peak in mountainous region of Gangwon-do, the east coast, and Jeju Island. Wind speed peaks at night in mountainous and eastern coastal regions, and in the afternoon inland and in the southwestern coastal region. The simulated wind map was verified with four upper-air sounding observations. Wind speed was shown to have a more pronounced overestimation tendency relative to observation in the winter rather than summer. The results of this wind mapping study help identify locations with the highest wind energy potential in South Korea.