• Title/Summary/Keyword: Upper reservoir

Search Result 183, Processing Time 0.021 seconds

A Study on Effects of Hydraulic Structure on River Environment(II) : Water Quality and Ecological Characteristics (수공구조물이 하천환경에 미치는 영향에 관한 연구(II) : 수질 및 생태학적특성)

  • 안승섭;최윤영;이수식
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.309-317
    • /
    • 2002
  • In this study, water protection reservoir is selected as the target which is located at the estuary of Taehwa river to analyze and examine the effects of hydraulic structure on river environment. This study examined the water quality variation characteristics among many effects of hydraulic structure on river environment before and after removal of the sediment protection reservoir when low flow is yielded. This study aims at the definition of factors which cause the change of ecological environment of river due to the effects of the sediment protection reservoir, and the proposal of the direction of environmental friendly river space development through the comparison of stream variation conditions(depth, velocity, and etc.) and riverbed variation characteristics with ecological depth condition of Taehwa-river's channel for each representative species of fish and examination those. Firstly, from the examination result of water quality when low flow is yielded before and after removal of the sediment protection reservoir for problems about water quality of river due to flow amount decrease in river, it is found that DO decreases about 0.78~0.86ppm at the lower stream of Myeongchon-gyo, and BOD decreases about 0.06~0.24ppm from right upper stream to the direction of estuary when the sediment protection reservoir is removed. It is known from the above that there is some improvement of water quality from the lower stream of Taehwa-gyo to the estuary in case of removal the sediment protection reservoir. Nextly, it is thought that the effects on ecosystem due to water depth and draw down in channel is not serious on the basis of the examination of water quality analysis result according to removal of sediment protection reservoir and hydraulic depths for reservation of ecosystem, these are 10~40cm for breeding season, 10~50cm for fry period, and 10~100cm for adult period of the representative species of fish in Korea.

Simulating Arsenic Concentration Changes in Small Agricultrual Reservoir Using EFDC-WASP Linkage Model (EFDC-WASP 연계모형을 이용한 소규모 농업용 저수지 비소 농도 모의)

  • Hwang, Soonho;Shin, Sat Byeol;Song, Jung-Hun;Yoon, Kwang Sik;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.29-40
    • /
    • 2018
  • Even if a small amount of arsenic (As) is entering to small agricultural reservoir from upper streams, small agricultural reservoir becomes sensitive to changes in arsenic concentration depending on the water level in case of accumulation continuously because of its scale. If we want to manage arsenic concentration in small agricultural reservoir, it is very important to understand arsenic changes in agricultural reservoir. In spite of the fact that modeling is the most accurate method for analyzing arsenic concentration changes in small agricultural reservoirs, but, it is difficult to monitor arsenic change everyday. So, if data is prepared for modeling arsenic changes, water quality modeling is more effective than monitoring. Therefore, in this study, arsenic concentration changes was simulated and arsenic concentration change mechanism in small reservoir was analyzed using hydrological and water quality monitoring data and by conducting EFDC (Environment Fluid Dynamics Code)-WASP (Water Quality Analysis Simulation Program) linkage. EFDC-WASP coupling technique was very useful for modeling arsenic changes because EFDC can consider hydrodynamic and WASP can perform arsenic concentration simulation, separately. As a results of this study, during dry season, As concentration was maintained relatively high arsenic concentrations. Therefore, water level control will be needed for managing As concentration of reservoir.

Study on the limitation of AVO responses shown in the seismic data from East-sea gas reservoir (동해 가스전 탄성파 자료에서 나타나는 AVO 반응의 한계점에 대한 고찰)

  • Shin, Seung-Il;Byun, Joong-Moo;Choi, Hyung-Wook;Kim, Geon-Deuk;Ko, Seung-Won;Seo, Young-Tak;Cha, Young-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-112
    • /
    • 2008
  • In the case of the deep reservoirs like the gas reservoirs in the East-sea, it is often difficult to observe AVO responses in CMP gathers. Because the reservoir becomes more consolidated as its depth deepens, P-wave velocity does not decrease significantly when the pore fluid is replaced by the gas. In this study, we analyzed the effects of Poisson's ratio difference on AVO response with a variety of Poisson's ratios for the upper and lower layers. The results show that, as the difference in Poisson's ratio between the upper and lower layers decreases, the change in the reflection amplitude with incidence angle decreases. To consider the limitation of AVO responses shown in the gas reservoir in East-sea, the velocity model was made by simulation Gorae V structure with seismic data and well logs. The results of comparing AVO responses observed from the synthetic data with theoretical AVO responses calculated by using material properties show that the amount of the change in reflection amplitude with increasing incident angle is very small when the difference in Poisson's ratio between the upper and lower layers is small. In addition, the characteristics of AVO responses were concealed by noise or amplitude distortion arisen during preprocessing. To overcome such limitations of AVO analysis of the data from deep reservoirs, we need to acquire precisely reflection amplitudes in data acquisition stage and use processing tools which preserve reflection amplitude in data processing stage.

  • PDF

Underground temperature survey for the study of shallow groundwater flow system

  • Okuyama Takehiko;Kuroda Seiichiro;Nakazato Hiroomi;Natsuka Isamu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.690-694
    • /
    • 2003
  • Groundwater preferentially flows through sediment layers with high permeability such as colluvium. Its flow paths are called groundwater vein streams. An underground temperature survey is a method to locate vein streams by underground temperature anomalies associated with flowing groundwater. A groundwater flow system near an irrigation reservoir located in the upper part of a landslide block was surveyed with this method. After a geomembrane lining was installed in the reservoir, the total cross-sectional area of the vein streams in the aquifer decreased to as little as 0.35 times that before installation of the liner. A change in groundwater quality also indicated that the mixing of groundwater with leaked water from the reservoir stopped after installation of the lining.

  • PDF

Evaluation of flood control capacity of agricultural reservoirs during flood season (홍수기 농업용 저수지의 홍수조절용량의 평가)

  • Jang, Ik Geun;Lee, Jae Yong;Lee, Jeong Beom;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.69-75
    • /
    • 2014
  • We investigated flood control capacity of 484 agricultural reservoirs with storage capacity of over 1 million $m^3$ in South Korea. In general, agricultural reservoir secures flood control capacity by setting up limited water level during flood season from late June to mid-September. The flood control capacity of an agricultural reservoir during flood season can be divided into stable flood control capacity during non-flood season, stable flood control capacity associated with limited water level, and unstable flood control capacity associated with limited water level. In general, the flood control capacity significantly (P < 0.001) increased with reservoir capacity irrespective of type of spillway. The unstable flood control capacity accounted for about 20 % of reservoir capacity in the uncontrolled reservoirs. The study reservoirs showed flood control capacity of 0.60-65 billion (B) $m^3$ and stable flood control capacity of 0.43-47 B $m^3$, depending on the upper and lower limited water levels during the flood season. The stable flood control capacity of the gated reservoirs (0.29-0.33 B $m^3$) was about two times than that of reservoirs with uncontrolled spillways (0.14 B $m^3$). The ratios of stable flood control capacity to reservoir capacity for agricultural reservoirs range from 21 to 23 %, similar to that for Daecheong multipurpose dam. Moreover, the reservoirs with over 100 mm ratio of flood control capacity to watershed area accounted for 38 % of total gated reservoirs. The results indicate that many agricultural reservoirs may contribute to controlling flood in the small watersheds during the flood season.

Development and Application of Multiple Box Water Quality Model for Estuary Reservoirs (담수호 Multiple Box 수질모형의 개발과 적용)

  • 임종환;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.111-122
    • /
    • 1989
  • A multiple box model which is suitable for the prediction of water quality in shallow lakes with active mixing is a water quality model expected to be used widely in estuary reservoir. In this study, a multiple box water quality model for estuary reservoirs (MBQER) was developed arid the applicability of the MBQER was tested by applying data obtained from Asan-estuary reservoir. The results of this study can be summarized as follows. 1. The MBQER, dynamic water quality model, was developed to estimate 10-day water qualities of estuary reservoirs. For the proper analysis and the application of hydraulics needed to build a model, lake hydraulics was simplified by condisering only hydrological inflow and lake mixing currents. The box division in the MBQER is longitudinal one dimension for upper and middle part, and two layers for lower part of the reservoir. 2. The methods of box division for the multiple box model were ekamined and applied to Asan-estuary reservoir. For determining the number of boxes, Pe number and Pk number were used. In case of three boxes, the error by the model simplification would be estimated about 5 % Therefore, in Asan reservoir, the proper number of boxes was three. 3. The MBQER was calibrated and verified using measured data in Asan-estuary reservoir from 1986 to 1988. The Root Mean Squares(RMS) for the differences between measured data and simulated results by the MBQER were 1.10$^{\circ}$C C for water temperature, 75.8mg/1 for salinity, 0.082mg/1 for total-phosphorus showing good estimations. 4. Through the simulation of water temperature and salinity by the MBQER, the exchange flow and the mixing coefficients for the estuary lake were determined. As a result of simulation, the horizontal mixing coefficients in Asan-estuary reservoir were in the range of 1.07X 105 to 1.12X 105 cm$^2$/sec and vertical mixing coefficient was 2.90X 10-1 cm$^2$/sec.

  • PDF

Outlier Detection of Real-Time Reservoir Water Level Data Using Threshold Model and Artificial Neural Network Model (임계치 모형과 인공신경망 모형을 이용한 실시간 저수지 수위자료의 이상치 탐지)

  • Kim, Maga;Choi, Jin-Yong;Bang, Jehong;Lee, Jaeju
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.107-120
    • /
    • 2019
  • Reservoir water level data identify the current water storage of the reservoir, and they are utilized as primary data for management and research of agricultural water. For the reservoir storage management, Korea Rural Community Corporation (KRC) installed water level stations at around 1,600 agricultural reservoirs and has been collecting the water level data every 10 minutes. However, various kinds of outliers due to noise and erroneous problems are frequently appearing because of environmental and physical causes. Therefore, it is necessary to detect outlier and improve the quality of reservoir water level data to utilize the water level data in purpose. This study was conducted to detect and classify outlier and normal data using two different models including the threshold model and the artificial neural network (ANN) model. The results were compared to evaluate the performance of the models. The threshold model identifies the outlier by setting the upper/lower bound of water level data and variation data and by setting bandwidth of water level data as a threshold of regarding erroneous water level. The ANN model was trained with prepared training dataset as normal data (T) and outlier (F), and the ANN model operated for identifying the outlier. The models are evaluated with reference data which were collected reservoir water level data in daily by KRC. The outlier detection performance of the threshold model was better than the ANN model, but ANN model showed better detection performance for not classifying normal data as outlier.

The Comparative Analysis of Reservoir Capacity of Chungju Dam based on Multi Dimensional Spatial Information (다차원 공간정보 기반의 충주댐 저수용량 비교분석)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.533-540
    • /
    • 2010
  • Dam is very important facility in water supply and flood control. Therefore study needs to analyze reservoir capacity accurately to manage Dam efficiently. This study compared time series reservoir capacity using multi-dimensional spatial information to Chungju Dam reservoir and major conclusions are as follows. First, LiDAR and multi beam echo sounder survey were carried out in land zone and water zone of Dam reservoir area. And calibration process was performed to enhance the accuracy of survey data and it could be constructed that multi dimensional spatial information which was clearly satisfied with the standard of tolerance error by validation with ground control points. Reservoir capacity by water level was calculated using triangle irregular network from detailed topographic data that was constructed by linked with airborne LiDAR and multi beam echo sounder data, and curve equation of reservoir capacity was developed through regression analysis in 2008. In the comparison of the reservoir capacity of 2008 with those of 1986 and 1996, the higher water level goes, total reservoir capacity of 2008 showed decrease because of the increase of sediment in reservoir. Also, erosion and sediment area could be analyzed through calculating the reservoir capacity by the range of water level. Especially the range of water level as 130.0~135.0 which is the upper part of average water level, showed the highest erosion characteristics during 1986~2008 and 1996~2008 and it is considered that the erosion of reservoir slant by heavy rainfall is major reason.

Evaluation of Estimated Storm runoff and Non-point Pollutant Discharge from Upper Watershed of Daecheong Reservoir during Rainy Season using L-THIA ArcView GIS Model (L-THIA ArcView GIS 모형을 이용한 대청호 만입부 유역의 직접유출 및 비점오염배출부하 산정 적용성 평가)

  • Choi, Jaewan;Lee, Hyuk;Shin, Dong-Seok;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.984-993
    • /
    • 2009
  • There have been growing concerns of algal growth at Daecheong reservoir due to eutrophication with excess nutrient inflow. Rainfall-driven runoff and pollutant from watershed are responsible for eutrophication of the Daecheong reservoir. In this study, two subwatersheds of the Daecheong reservoir were selected and water quality characteristics were analyzed. The L-THIA ArcView GIS model was used for evaluation of direct runoff and water quality. The $R^2$ and the EI value for direct runoff were 0.95 and 0.93 at Wol-oe watershed and were 0.81, 0.71 at An-nae watershed, respectively. The $R^2$ for SS, T-P were 0.53, 0.95 at Wol-oe watershed and 0.89, 0.89 at An-nae watershed, respectively. It has been proven that the L-THIA ArcView GIS model could be used for evaluating direct runoff and pollutant load from the watershed with reasonable accuracies.

Effects of Sediments on the Growth of Algae at Chusori Area in Daechung Reservoir (대청호 추소리 수역의 퇴적물이 조류 성장에 미치는 영향)

  • Oh, Kyoung-Hee;Kim, Yong-Jun;Cho, Young-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.533-542
    • /
    • 2015
  • In order to investigate the effect of internal loading from sediment on algal blooming at Chusori area in Daechung Reservoir, the amount and contamination level of sediment and the release rate of total phosphorus were analyzed. The sedimentary layer was consisted with two layers, and the average depth of upper and lower ones were 0.35 and 1.44 m, respectively. The fraction of inorganic phosphorus in the sediment was higher than that of organic phosphorus, and the fractions of phosphorus which responsible for internal loading were very high as in the range of 72.7 and 80.2% of inorganic phosphorus. The C/N ratio of sediment taken with core sampler indicated the organic compounds are originated from settled algae from water body. The average release rate of total phosphorus from sediment was $6.74({\pm}0.50)mg/m^2/day$. These results indicated that the internal loading from sediment contributes the excessive algal growth at Churosi area, and the countermeasures to improve the quality of sediments are required to manage algal blooming in Daechung Reservoir.