• Title/Summary/Keyword: Upper reservoir

Search Result 183, Processing Time 0.031 seconds

Experimental study on multi-level overtopping wave energy convertor under regular wave conditions

  • Liu, Zhen;Han, Zhi;Shi, Hongda;Yang, Wanchang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.651-659
    • /
    • 2018
  • A multi-level overtopping wave energy converter was designed according to the large tidal range and small wave heights in China. It consists of two reservoirs with sloping walls at different levels. The reservoirs share a common outflow duct and a low-head axial turbine. The experimental study was carried out in a laboratory wave-flume to investigate the overtopping performance of the device. The depth-gauges were used to measure the variation of the water level in the reservoirs. The data was processed to derive the time-averaged overtopping discharges. It was found that the lower reservoir can store wave waters at the low water level and break the waves which try to climb up to the upper reservoir. The upper sloping angle and the opening width of the lower reservoir both have significant effects on the overtopping discharges, which can provide more information to the design and optimization of this type of device.

Evaluation of Systematic Safety for a Small Reservoir Group based on System Reliability Technique (체계 신뢰성 기법을 이용한 소규모 저수지군의 시스템적 안전도 평가)

  • Park, Jin-Seon;Jeon, Jeong-Bae;Yoon, Seong-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.101-108
    • /
    • 2015
  • The purpose of this study was to evaluate the safety of the small reservoir, which is distributed in a rural area, based on systemic reliability. It has been estimated that safety of respective reservoir the calculation of failure probability for individual reservoirs can evaluate the safety of the reservoir of the study area. The change of safety for watershed could be figured out as that result. Probability of failure was increased from $3.90{\times}10^{-5}$ to $1.35{\times}10^{-4}$ in Naesu-inpyung reservoir, from $1.33{\times}10^{-5}$ to $4.77{\times}10^{-5}$ in Buyeon reservoir and from $4.24{\times}10^{-5}$ to $2.55{\times}10^{-2}$ in Dalakmal respectively. From the results, the collapse of the upper stream reservoir was analyzed qualitatively that may affect the safety of the reservoir on the downstream area.

Long-term Simulation and Uncertainty Quantification of Water Temperature in Soyanggang Reservoir due to Climate Change (기후변화에 따른 소양호의 수온 장기 모의 및 불확실성 정량화)

  • Yun, Yeojeong;Park, Hyungseok;Chung, Sewoong;Kim, Yongda;Ohn, Ilsang;Lee, Seoro
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.14-28
    • /
    • 2020
  • Future climate change may affect the hydro-thermal and biogeochemical characteristics of dam reservoirs, the most important water resources in Korea. Thus, scientific projection of the impact of climate change on the reservoir environment, factoring uncertainties, is crucial for sustainable water use. The purpose of this study was to predict the future water temperature and stratification structure of the Soyanggang Reservoir in response to a total of 42 scenarios, combining two climate scenarios, seven GCM models, one surface runoff model, and three wind scenarios of hydrodynamic model, and to quantify the uncertainty of each modeling step and scenario. Although there are differences depending on the scenarios, the annual reservoir water temperature tended to rise steadily. In the RCP 4.5 and 8.5 scenarios, the upper water temperature is expected to rise by 0.029 ℃ (±0.012)/year and 0.048 ℃ (±0.014)/year, respectively. These rise rates are correspond to 88.1 % and 85.7 % of the air temperature rise rate. Meanwhile, the lower water temperature is expected to rise by 0.016 ℃ (±0.009)/year and 0.027 ℃ (±0.010)/year, respectively, which is approximately 48.6 % and 46.3 % of the air temperature rise rate. Additionally, as the water temperatures rises, the stratification strength of the reservoir is expected to be stronger, and the number of days when the temperature difference between the upper and lower layers exceeds 5 ℃ increases in the future. As a result of uncertainty quantification, the uncertainty of the GCM models showed the highest contribution with 55.8 %, followed by 30.8 % RCP scenario, and 12.8 % W2 model.

The Analysis of Water Quality and Suspended Solids Effects against Transparency of Major Artificial Reservoirs in Korea. (우리나라 주요 인공호의 투명도에 대한 수질 및 수중 부유물 영향 분석)

  • Kong, Keon-Hwa;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.221-231
    • /
    • 2009
  • This study was carried out to comparatively identify characteristics of turbid water influence in Imha Reservoir, Soyang Reservoir, and Daecheong Reservoir in Korea. We used 3 years dataset from 2002 to 2004 and analyzed seasonal water quality characteristics, particular parameters in association with turbidity, and light transparency to figure out the trends. All parameters to be used in the study were total phosphate (TP), total nitrogen (TN), chlorophyll-${\alpha}$ (Chl), suspended solids (SS), Secchi depth (SD), conductivity, and verticallight extinction coefficienct($K_d$), euphotic zone ($Z_{eu}$), and critical depth ($Z_p$). All parameters depend on season and watershed. Suspended solids from Soyang Reservoir were usually caused by TP, mainly related to living wastes and agricultures in upper stream. Daecheong Reservoir was influenced by organic matters related to large phytoplankton biomass in summer and inorganic suspended solids by nutrients in the winter. However, in case of Imha Reservoir, turbid water, consisted in silt and clay through heavy precipitation remained in the waterbody to decrease water transparency along with TP and caused the light limitation in winter. Overall results suggest that it was necessary to establish various management programs because the reasons occurring turbidity were varied according to the reservoir circumstances.

Application of Hydrological Monitoring System for Urban Flood Disaster Prevention (도시홍수방재를 위한 수문모니터링시스템의 적용)

  • Seo, Kyu-Woo;Na, Hyun-Woo;Kim, Nam-Gil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1209-1213
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of city river basin of Pusan local. Process various hydrological datas and basin details datas which is collected through basin basis data. weather satellite equipment(EMS-DEU) and automatic water level equipment(AWS-DEU) and use as basin input data of ILLUDAS model, SWMM model and HEC-HMS model In order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS model. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS model and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed imagination reservoir(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

  • PDF

Studios on Echinostomu spp. in the Chungju Reservoir and upper streams of the Namhan River (충주호 및 그 상류 지역의 Echinostoma spp.에 대한 연구)

  • 양용석
    • Parasites, Hosts and Diseases
    • /
    • v.28 no.4
    • /
    • pp.221-234
    • /
    • 1990
  • The present study was performed to know the epidemiological statug of echinostomiasis in the Chungju Reservoir and upper streams of Namhan River, together with an experimental study on the life history o( Echinostoma hortense. The stool specimens of 169 inhabitants and 473 junior high school students from 5 different villages revealed 3(0.5%) echinostomatid egg Positive cases. E. hortense adult worms were recovered from one patient after a treatment and purgation. For the other two patients, it was presumed that one had 2. hortense and another E. cinetorchis infection, based on the morphology of eggs. Five kinds of freshwater snails(168 Radix auricularia coreane, 534 Physa arutp, 144 Hippeutis cnntori, 56 Cipcngopaludina chinensis malleata and 125 Semiiulcospira nediila glebus) examined for the cercariae of echinostomes showed negative results. Ten kinds of freshwater fishes examined for E. herten-'emetacercariae revealed positive rates as Misgurnus anguillicaudatus 40.5%, Odentobutis obscura interrupta 20.3%, Moroco onycephalus 3.9%, and Coreoperca hawamebari 2.0%. In the experimental study, the metacercariae of E. horlense were infected to rats, eggs were collected from adult worms and cultivated, and miracidia were obtained. The miracidia were artificially infected to freshwater snails (R. auricularia), and cercarial shedding was studied. It was revealed that, when the snails were kept at a low temperature ($24^{\circ}C$), only 523 cercariae (on average) were produced during 24 hrs, while they were at a high temperature ($30^{\circ}C$), as many as 9, 990 cercariae (on average) were shed during the same time. The experimental infection of E. hortense cercariae to freshwater fishes was successful in 0. obscura interrupta 52.0%, M. anguillicaudatus 30.3%, C. kawamebari 27.0%, Cobitis lutheri 15.0%, M. cxycephazus 7.3%, Pseudogobio esocinus 4.3%, Squalidus cereanus 2.0%, Zccco platypus 1.3%, and Pungtungia herzi 1.3%. However, infection was not successful to snails, C. chinensis. It has been proved that the Chungju Reservoir and upper streams of Namhan riyrr are endemic areas of echinostomiasis, especially of E. horfense, and snails such as R. auritulerie coreana and fishes such as O. obscura interrupts, M. gnguillicgudgtus, and others are taking the role of 6rst and second intermediate hosts, respectively.

  • PDF

Evaluation of Application to Pre-Developed Delivery Load Equation at Upper Watershed of the Daechung Reservoir (대청호 상류유역의 기 개발된 유달부하량 산정식의 적용성 평가)

  • Lee, Jun-Bae;Kim, Kap-Soon;Lee, Kyu-Seung;Yoon, Young-Sam;Lim, Byung-Jin;Jung, Jae-Woon
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2012
  • BACKGROUND: To improve the Daechung reservoir water quality, a quantitative estimation of the delivery load from upper watershed need to be conducted prior to others. To do so, an intensive monitoring is necessary because of the complexity and uncertainty of the delivery load from uppper watershed. However, intensive monitoring need to invest much time, cost, and effort. So, many researcher have developed an equation to estimate the delivery loads. But, relatively little research has been conducted on the applicability of pre-developed equation using other sites. Therefore, the objective of this study was to evaluate application of the equation for BOD, T-N and T-P delivery load. METHODS AND RESULTS: To verify the applicability of the equation, the following equation was used; Delivery loads(kg/day)=generated pollutant loads${\times}(1-{\alpha}){\times}$(daily outflow/${\beta})^{\gamma}$. The equations could be calculated the daily delivery loads of streams without any data of water quality, only with the data of daily runoff of study sites. The equations were applied to Youngdogcheon, Chogangcheon, Bocheongcheon, Sookcheon to examine its applicability using monitoring data. The results showed that the estimated delivery loads were in a good agreement with the observed data and indicated reasonable applicability of the equations. CONCLUSION(s): Overall, the equations were satisfactory in estimation of delivery loads at upper watershed of the Daechung reservoir. Therefore, the equations could be contributed to better water quality management in the Daechung reservoir.

Analysis of the Characteristics of NPS Runoff and Application of L-THIA model at Upper Daecheong Reservoir (대청호 상류 유역의 비점오염원 유출특성 분석 및 L-THIA 모형 적용성 평가)

  • Shin, Min-Hwan;Lee, Jae-An;Cheon, Se-Uk;Lee, Yeoul-Jae;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • Generation and transportation of runoff and pollutant loads within watershed generated eutrophication at Daecheong reservoir. To improve water quality at Daecheong reservoir, the best management practices should be developed and applied at upper watersheds for water quality improvement at downstream areas. In this study, two small watersheds of upper Daecheong reservoir were selected. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. To apply the L-THIA ArcView GIS model was evaluated for direct runoff and water quality estimation at small watershed. And the Web-based Hydrograph Analysis Tool (WHAT) was used for direct runoff separating from total flow. As a result, the $R^2$ (Coefficient of determination) value and Nash-Sutcliffe coefficient value for direct runoff comparison at An-nae watershed were 0.81 and 0.71, respectively. And the $R^2$ value and Nash-Sutcliffe coefficient value at Wol-oe were 0.95 and 0.93. The $R^2$ value of BOD, TOC, T-N and T-P at An-nae watershed were BOD 0.94, TOC 0.81, T-N 0.94 and T-P 0.89. And the $R^2$ value of BOD, TOC, T-N and T-P at Wol-oe watershed were BOD 0.80, TOC 0.93, T-N 0.86 and T-P 0.65. The result that estimated pollutant loadings using the L-THIA ArcView GIS model reflected well the measured pollutant loadings except for T-P in Wol-oe watershed. With L-THIA ArcView GIS model, the direct runoff and non-point pollutant (NPS) loadings in the watershed could be analyzed through simple input data such as daily rainfall, land uses, and hydrologic soil group.

LONG-TERM RESERVOIR SEDIMENT MANAGEMENT CONSIDERING OTHER OPERATIONAL OBJECTIVES

  • Ko, Seok-Ku;Kim, Woo-Gu;Lee, Gwang-Man
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.43-50
    • /
    • 2002
  • The Yellow River Basin located in the Northern part of China is well-known not only as the seriously limited water sources but the greatest sediment-carrying stream in the world. The observed annual average sediment concentration in this area is $37.6kg/\textrm{mm}^3$, and 3.1% of the water volume is occupied by sediments. Due to the reason, water development has been extremely limited and it has been appeared as one of the most difficult problems in reservoir development and management. The major obstacle to surface water uses is reservoir sedimentation so that it has been strongly requested to seek the method managing sediment by optimal fashion. To solve this problem, KOWACO (Korea Water Resources Corporation) has developed various methods on the optimal reservoir management schemes including sediment management for the Upper Fenhe Basin Reservoir System at the cooperation project with Chinese. Information Variable Dynamic Programming. which is one of them, was developed for the reservoir sediment management and a set of non-dominated solutions are generated to choose the best alternative in water supply and reservoir sediment objective problem.

  • PDF

Application of CE-QUAL-W2 to Daecheong Reservoir for Eutrophication Simulation (대청호 부영양화 모의를 위한 CE-QUAL-W2 모델의 적용)

  • Chung, Se Woong;Park, Jae Ho;Kim, Yukyung;Yoon, Sung wan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.52-63
    • /
    • 2007
  • The objectives of this study were to setup a laterally-averaged two-dimensional eutrophication model in Daecheong Reservoir, and to validate the model under two different hydrological conditions; drought year (2001) and wet year (2004). The suggested modeling approach was found to be very effective to simulate the dynamic variations of water temperature, nutrients, dissolved oxygen, and algae in the reservoir. The model satisfactorily replicated the algal bloom that happened between Janggae (Sta.4) and Haenam (Sta.5) during summer of 2001, although the peak concentration was slightly underestimated due to the laterally averaged assumption. The allochthonous phosphorus and algae induced from upstream and So-oak stream during several rainfall events were found to be most significant sources of algal bloom in 2001. In contrast to draught year, the flood events happened during summer months of 2004 tended to remove the hypolimnetic anaerobic conditions and dilute the dissolved phosphorus in the upper reach of the reservoir, and in turn mitigated algal bloom. It implies that the impact of hydrological and hydrodynamic conditions on the reservoir water quality is highly significant, and a drought year may be more vulnerable to algal bloom in the reservoir.