• Title/Summary/Keyword: Upper and low-level jet

Search Result 23, Processing Time 0.025 seconds

Numerical Case Study of Heavy Rainfall Occurred in the Central Korean Peninsula on July 26-28, 1996

  • Kim, Young-Ah;Oh, Jai-Ho
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.15-29
    • /
    • 1998
  • The numerical simulation of heavy precipitation event occurred in the central Korean Peninsula on July 26-28, 1996 was performed using the fine mesh model. ARPS (Advanced Regional Prediction System) developed by the CAPS (Center for Analysis and Prediction of Storms). Usually, the heavy rainfalls occurred at late July in the Korean Peninsula were difficult to predict, and showed very strong rainfall intensity. As results, they caused a great loss of life and property. As it usual, this case was unsuccessful to predict the location of rain band and the precipitation intensity with the coarse-mesh model. The same case was, however, simulated well with fine-mesh storm-scale model, ARPS. Moisture band at 850 hPa appeared along the Changma Front in the area of China through central Korea passed Yellow Sea. Also the low-level jet at 700 hPa existed in the Yellow Sea through central Korea and they together offered favorable condition to induce heavy rainfall in that area. The convective activities developed to a meso-scale convective system were observed at near the Yangtze River and moved to the central Korean Peninsula. Furthermore, the intrusion of warm and moist air, origninated from typhoon, into the Asia Continent might result in heavy rainfall formation through redistribution of moisture and heat. In the vertical circulation, the heavy rainfall was formed between the upper- and low-level jets, especially, the entrance region of the upper-level jet above the exit the region of the low-level jet. The low level convergence, the upper level divergence and the strong vertical wind were organized to the very north of the low level jet and concentrated on tens to hundreds km horizontal distance. These result represent the upper- and low-level jets are one of the most important reasons on the formation of heavy precipitation.

  • PDF

The Characteristics of Heavy Rainfall over the Korean Peninsular - Case Studies of Heavy Rainfall Events during the On- and Off- Changma Season- (장마기와 장마 후의 한반도 집중호우 특성 사례분석)

  • Chung, Hyo-Sang;Chung, Yun-Ang;Kim, Chang-Mo;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1511-1521
    • /
    • 2012
  • An attempt is made to analyse characteristic features of heavy rainfalls which occur at the metropolitan area of the Korean peninsular the on- and off- Changma season. For this, two representative heavy rainfall episodes are selected; one is the on-Changma season wherein a torrential rain episode happened at Goyang city on 12 July 2006, and the other is the off-Changma season, a heavy rainfall event in Seoul on 21 September 2006. Both recorded considerable amounts of precipitation, over 250mm in a half-day, which greatly exceeded the amount expected by numerical prediction models at those times, and caused great damage to property and life in the affected area. Similarities in the characteristics of both episodes were shown by; the location of upper-level jet streak and divergence fields of the upper wind over heavy rainfall areas, significantly high equivalent potential temperatures in the low atmospheric layer due to the entrainment of hot and humid air by the low-level jet, and the existence of very dry air and cold air pool in the middle layer of the atmosphere at the peak time of the rainfall events. Among them, differences in dynamic features of the low-level jet and the position of rainfall area along the low-level jet are remarkable.

A Study on the Heavy Rainfall Cases Associated with Low Level Jet Inflow along the Changma Front (장마전선상에서 하층제트 유입으로 인한 집중호우에 관한 연구)

  • Choi, Ji-Young;Shin, Ki-Chang;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.44-57
    • /
    • 2011
  • In general, heavy rainfall in Korea is mostly associated with inflow of 850hPa low-level jet. It transports abundant heat and moisture flux to the Changma front. In this study, synoptic characteristics of heavy rainfall in Korea from a case study is examined by classifying heavy rainfall cases with synoptic patterns, in particular distribution of upper- and low-level jets, western North Pacific high, and moisture flux. The surface and upper-level weather charts including auxiliary analysis chart and radar and satellite images obtained from the Korea Meteorological Administration, and 500hPa geopotential heights from NCEP/NCAR are used and then KLAPS is applied to understand the local atmospheric structure associated with heavy rainfall. Results show that maximum frequency in 60 heavy rainfall cases with more than 150mm/day appears in the Changma type of 43 cases (a proportion in relation to a whole is 52%) including the combined Changma types with typhoon and cyclone. As indicated in previous studies, most heavy rainfall cases are related to inflow of low-level jet. In addition, synoptic characteristics based on the analyses of weather charts, radar and satellite images, and KLAPS in heavy rainfall case of 12 July, 2009 reveal that the atmospheric vertical structure in particular equivalent potential temperature favorable for effective inflow of warm and moist southwesterly into the Changma front is linked to large potential instability and the strong convergence accompanied with low-level jet around Suwon contributes to atmospheric upsliding along the Changma front, producing heavy rainfall.

Asian Dust Transport during Blocking Episode Days over Korea

  • Moon, Yun-Seob;Kim, berly-Strong;Kim, Yoo-Keun;Lim, Yun-Kyu;Oh, In-Bo;Song, Sang-Keun;Bae, Joo-Hyon
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.111-120
    • /
    • 2002
  • Asian dust(or yellow sand) occurs mainly in spring and occasionally in winter in east Asia, when the weather conditions are under an upper trough/cut-off low and surface high/low pressure system during blocking episode days associated with the stationary patterns of the upper level jet stream. The transport mechanism for Asian dust during the blocking episode days in spring 2001 was analyzed using the TOMS aerosol index and meteorological mesoscale model 5(MM5). Based on the E vector, an extension of an Eliassen-Palm flux, the blocking episode days were found to be associated with the development of an upper cut-off low and surface cyclones. Concurrently, the occurrence of dust storms was also determined by strong cold advection at the rear of a jet streak, which exhibited a maximum wind speed within the upper jet stream. As such, the transport mechanism for Asian dust from China was due to advection of the isentropic potential vorticity(IPV) and isentropic surfaces associated with tropopause folding. The transport heights for Asian dust during the blocking episode days were found to be associated with the distribution of the isentropes below the IPV At the same time, lee waves propagated by topography affected the downward motion and blocking of Asian dust in China. The Asian dust transported from the dust source regions was deposited by fallout and rain-out with a reinforcing frontogenesis within a surface cyclone, as determined from satellite images using TOMS and GMS5. Accordingly, these results emphasize the importance of forecasting jet streaks, the IPV, and isentropes with geopotential heights in east Asia.

Analysis of Kinematic Characteristics of Synoptic Data for a Heavy Rain Event(25 June 2006) Occurred in Changma Front (장마전선에서 발생한 2006년 6월 25일의 호우 사례에 대한 종관자료의 운동학적 특성 분석)

  • Kim, Mie-Ae;Heo, Bok-Haeng;Kim, Kyung-Eak;Lee, Dong-In
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.37-51
    • /
    • 2009
  • Kinematic characteristics of a heavy rainfall event occurred in Changma front are analyzed using synoptic weather charts, satellite imagery and NCEP(National Centers for Environmental Prediction) / NCAR(National Centers for Atmospheric Research) reanalysis data. The heavy rainfall is accompanied with mesoscale rain clouds developing over the Southwest region of Korea during the period from 0300 LST to 2100 LST 25 June 2006. The surface cyclone in the Changma front is generated and developed rapidly when it meets following vertical conditions: The maximum value of relative vorticity is appeared at 700 hPa and is extended gradually near the surface. It is thought that the vertical structure of relative vorticity is closely related with the descent of strong wind zone exceeding $10ms^{-1}$. The jet core at 200 hPa is shifted southward and extended downward and the low-level jet stream associated with upper-level jet stream appeared at 850 hPa. Kinematic features of heavy rainfall system at cyclone-generating point are as follows: In the generating stage of cyclone, the relative vorticity below 850 hPa increased and the convergence below 850 hPa and the divergence at 400 hPa are intensified by southward movement of jet core at 200 hPa. The heavy rainfall system seems to locate to the south of the exit region of upper-level jet streak; In the developing stage of cyclone, the relative vorticity below 850 hPa and the convergence near surface are further strengthened and upward vertical velocity between 850 hPa and 200 hPa is increased.

Characteristics of near-surface ozone distribution

  • Kim, Yoo-Keun;Lee, Hwa-Woon;Kim, Jae-Hwan;Moon, Yun-Seob;Song, Sang-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.127-137
    • /
    • 2000
  • This study presents an analysis of the characteristics of vertical ozone distribution near the surface using ozonesonde data(l995 to 1998), plus surface ozone and meteorological data from the Pohang region. These features were examined in detail using three case studies. The first related to episodes of high surface ozone concentrations during the Spring season when the frontogenesis between the high and low pressure associated with the upper-level jet stream was found to be located near the surface. The second was a 5-day winter period(l3 -17 December, 1997) in the Pohang province when the hourly concentrations exceeded 90 ppb on several occasions owing to low-level jets(LLJs) induced by a nocturnal stable layer. Accordingly, this explains why the high surface ozone concentrations occurred at night as the ozone was transported across the zone by a strong wind speed( over 12.5 ms .1). The third case study was ozone enhancement due to photochemical reactions. In this case, the maximum concentration of ozone exceeded 60 ppb in the summer(23 -28 August, 1997). When an ozone peak appeared within the boundary layer, the occurrence frequency of a low-level jet due to the nocturnal stable layer was about 77%, similarly the occurrence frequency of a near-surface ozone peak relative to the appearance of an LLJ was about 76%. Accordingly, there is clearly a close correlation between the occurrence of LLJs and near-surface ozone peaks.

  • PDF

A Case Study on Heavy Rainfall Using a Wind Profiler and the Stability Index

  • Hong, Jongsu;Jeon, Junhang;Ryu, Chansu
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.221-232
    • /
    • 2015
  • In this study, the vertical characteristics of wind were analyzed using the horizontal wind, vertical wind, and vertical wind shear, which are generated from a wind profiler during concentrated heavy rain, and the quantitative characteristics of concentrated heavy rain were analyzed using CAPE, SWEAT, and SRH, among the stability indexes. The analysis of the horizontal wind showed that 9 cases out of 10 had a low level jet of 25 kts at altitudes lower than 1.5 km, and that the precipitation varied according to the altitude and distribution of the low-level jet. The analysis of the vertical wind showed that it ascended up to about 3 km before precipitation. The analysis of the vertical wind shear showed that it increased up to a 1 km altitude before precipitation and had a strong value near 3 km during heavy rains. In the stability index analysis, CAPE, which represents thermal buoyancy, and SRH, which represents dynamic vorticity, were used for the interpretation of the period of heavy rain. As SWEAT contains dynamic upper level wind and thermal energy, it had a high correlation coefficient with concentrated-heavy-rain analysis. Through the case studies conducted on August 12-13, 2012, it was confirmed that the interpretation of the prediction of the period of heavy rain was possible when using the intensive observation data from a wind profiler and the stability index.

The Study on the Frontal Thunderstorm during Winter Time in the Korean Peninsula (우리나라 동계 전선성 뇌우에 관한 연구)

  • Kim, Jong-Seok;Park, Sang Hwan;Ham, Sook Jung;Ban, Ki-Song;Choi, Young Jean;Chang, Dong-Eon;Chung, Hyo-Sang
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.351-358
    • /
    • 2006
  • The structure of frontal thunderstorm in winter time is different from that of in summer time over the Korean peninsula, due to dry tongue and upward motion. The dry tongue, that is propagation of dry zone from upper level to lower level, was formed after front passage and the upward motion is intensified by the strengthened low level jet. Since this mechanism makes the structure more unstable, thunderstorm occurs at relatively low cloud top height. This study suggests a forecast guidance of winter time frontal thunderstorm that thunderstorms develop when one of the following conditions are satisfied: 1) total totals (TT) >40, 2) K index >-10, 3) mixing ratio ${\geq}$ 3.5 g/kg.

Analysis of Upper- and Lower-level Wind and Trajectory in and from China During the P eriod of Occurrence of Migratory Insect Pests of South Korea (비래해충 발생기간 중국 발원지 바람 및 한반도 유입 궤적 분석)

  • Jung-Hyuk Kang;Seung-Jae Lee;Joo-Yeol Baek;Nak-Jung Choi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.415-426
    • /
    • 2023
  • In this study, the horizontal and vertical structure of wind speed and wind direction were analyzed at the origin of migratory insect pests in China. Wind rose analysis was carried out using the Land-Atmosphere Modeling Package (LAMP) - WRF data, which has the spatiotemporal resolution of about 20 km and 1 hour intervals. Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) was employed for backward trajectory analysis between South Korea and Southeastern China with Global Data Assimilation System (GDAS). The research interest date is July 16, when rice planthopper and leafhopper were observed at the same time. In order to examine where a jet stream occurs in the vertical in source regions and South Korea during the period (July 8 to July 17 in 2021), three-dimensional wind information was extracted and analyzed using the east-west, north-south, and vertical component wind data of the LAM P. The vertical distribution of wind showed that the wind changed in favor of the inflow of migratory insect pests during the period. As a result of analyzing the wind rose, about 30% or more of the wind at a point close to South Korea was classified into the low-level jet stream. In addition, majority of the wind directions for the low-level jet streams (rather than high-level jet streams) at the five origin sites were heading toward South Korea and even Japan, and this was supported by the HYSPLIT-based backward trajectory analysis.

A Case Study of Mesoscale Snowfall Development Associated with Tropopause Folding (대류권계면 접힘에 의한 중규모 강설 발달에 대한 사례 연구)

  • Kim, Jinyeon;Min, Ki-Hong;Kim, Kyung-Eak;Lee, Gyuwon
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.331-346
    • /
    • 2013
  • A case study of mesoscale snowfall with polar low signature during 25~26 December 2010 in South Korea is presented. The data used for analysis include surface and upper level weather charts, rain gauge, sea surface temperature, satellite imagery, sounding, and global $1^{\circ}{\times}1^{\circ}$ reanalysis data. The system initiated with a surface trough near the bay of Bohai but quickly intensified to become a polar low within 12 hours. The polar low moved southeastward bringing snowfall to southwestern Korea. There was strong instability layer beneath 800 hPa but baroclinicty was weak and disappeared as the low progressed onto land. Shortwave at 500 hPa and the surface trough became in-phase which hindered the development of the polar low while it approached Korea. However, there were strong tropopause folding (~500 hPa) and high potential vorticity (PV), which allowed the system to maintain its structure and dump 20.3 cm of snow in Jeonju. Synoptic, thermodynamic, dynamic, and moisture analyses reveal that polar low developed in an area of baroclinicity with strong conditional instability and warm air advection at the lower levels. Further, the development of a surface trough to polar low was aided by tropopause folding with PV advection in the upper level, shortwave trough at 500 hPa, and moisture advection with low-level jet (LLJ) of 15 m $s^{-1}$ or more at 850 hPa. Maximum snowfall was concentrated in this region with convection being sustained by latent heat release.